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Part 5. Multisite mixing models: built-in functions in GEM-Selektor v.3.4 code  
 
Treatment of condensed symmetric non-electrolyte solutions in GEM-Selektor code is based 
on the default expression for the chemical potential of a j-th end member:  

       (5.1-1),  

where gj,T,P is the molar apparent Gibbs energy function at T,P of interest; is the 

end member mole fraction (nj is the primal mole quantity of j-th species and nk = å xj  , j Î Lk  
is the total mole quantity of the k-th phase), and fj  is a ‘real’ activity coefficient.  
If all fj  = 1 at any composition then eqn (5.1-1) reduces to the Raoult’s law of simple ideal 
mixing, where the activity of j-th end-member equals its mole fraction. This definition of ide-
al mixing, corresponding to the configurational entropy of random mixing on a single type of 
structural sites, is rather narrow. In a broader sense, ideal solutions can be defined as having 
zero excess entropy, zero enthalpy and zero volume of mixing (Oates, 1966; Price, 1985; An-
derson and Crerar, 1993). Microscopic moieties (usually ions or atoms) can substitute each 
other independently on one or several types of structural sites, often called ‘sublattices’ 
(Hillert, 1998; Lucas et al., 2007). Sublattices formally represent long-range ordering (LRO).   
Eq (5.1-1) corresponds to the simplest case where two or more moieties substitute each other 
on one site type, and there is one moiety per formula of end member. This is the case e.g. for 
carbonate (A,B,…)CO3 or sulfate (A,B,…)SO4 solid solutions, but it is clearly insufficient for 
most of rock-forming silicate or oxide minerals where mixing occurs on several sublattices 
simultaneously, and can be complicated by short-range ordering (SRO) effects. In such ideal 
‘multisite mixing’, the activity aj of j-th end member is not simply its mole fraction xj, but a 
more complex function of ‘site fractions’ ys,m of m-th substituting moiety on s-th site type in 
k-th solution phase. This corresponds to a more complex form of the configurational entropy, 
and causes the ‘reciprocal’ relations between end members and their standard-state properties.  

Here we need to introduce a set Xk of indexes of sublattices (structural site types) in the k-th 
phase, where n(Xk) is the number of site types indexed with s Î Xk. Further, we introduce a set 
Ms of indexes of n(Mk) moieties that can appear on s-th site in k-th phase structure; moieties 
will be indexed with m Î Mk. Let hj,s,m be a ‘moiety-site multiplicity’, i.e. the number of 
moles of m-th moiety on s-th site in one mole of j-th end member at standard state ( j Î Lk), 
and hs be the number of s-th sites in one formula unit of any end member of the k-th phase (s 
Î Xk ) (‘site multiplicity’). Note that the same species (e.g. ion M+), if it appears on two dif-
ferent sublattices, must be considered as two different moieties; the same applies to vacancies.  

 
5.1. Ideal part of the end-member activity term  
Now, the approximation of chemical potential of j-th end member of k-th phase takes the form  

  j Î Lk    (5.1-2),  

where fj  is the ‘macroscopic’ end member activity coefficient, and  is the ideal part of 
activity related to the partial molar configurational entropy: 

      (5.1-3). 
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Following the derivation in (Price, 1985),  

  m Î Mk   s Î Xk   j Î Lk (5.1-4),  

where the site fraction of m-th moiety on s-th site in k-th phase is 

      m Î Mk       (5.1-5).  

here ns,m is the number of moles of m-th moiety on s-th sublattice sites in the ‘real’ state.  
At standard state, the s-th site fraction of m-th moiety in j-th end member is  

  (‘site multiplicity’ )  (5.1-6),  

and the end member has a configurational entropy term itself:      

     (5.1-7) 

Combination of eqs (5.1-4, 5.1-7 and 5.1-3) yields 

  m Î Mk   s Î Xk   j Î Lk (5.1-8) 

The site fraction ys,m (eq 5.1-5) in the k-th phase can be expressed through mole fractions of 
end members xj because   

    jk Î Lk    (5.1-9),  

where njk is the primal mole amount of jk-th end member, and (here, summations 

run over all end members in k-th phase). Using ,  eq (5.1-5) takes the form:  

      jk Î Lk     m Î Mk   s Î Xk    (5.1-10).  

Substituting this and eq (5.1-6) into eq (5.1-8) results in the ideal activity of j-th end member 

 jk Î Lk  (5.1-11). 

Now, eq (5.1-2) for the end member chemical potential takes a more general form:  

  (5.1-12).  

At n(X) = 1 and all hj,s,m numbers equal to unity, eq (5.1-11) reduces to ln xj – the simple ideal 
single-site mixing activity contribution - and eq (5.1-12) reduces to eq (5.1-1). In principle, 
any multi-site mixing model can be put on top of the ln xj term in eq (5.1-1) by introducing a 
‘configurational entropy’ term lj, also called ‘fictive activity coefficient’:   

ms
s m

msj
con
j yRS ,,,

)( lnåå-=D h

å
=

m
ms

ms
ms n

n
y

,

,
,

s

msjo
msjy h

h ,,
,, = å=

m
msjs ,,hh

o
msj

s m
msj

ocon
j yRS ,,,,

),( lnåå-=D h

åå ÷
÷
ø

ö
ç
ç
è

æ
×=

s m
o
msj

ms
msj

con
j y

y
a

,,

,
,,

)( lnln h

åå ==
k

kk

k

kk
j

jmsjk
j

jmsjms xnnn ,,,,, hh

å=
k

k
j

jk nn

å=
m

msjs ,,hh

, ,

, , ,
, ,

1k k
k

k k
kk k

k

j s m j
j

s m j s m j
jj s m j s

m j

x
y x

x

h
h

h h
= =
å

ååå

}ln){ln(ln ,,,,,,
)(

msj
s m j

jmsjmsj
con
j

k

kk
xa hhhåå å -=

jmsj
s m j

jmsjmsj
PTj

j fx
RT
g

k

kk
ln}ln){ln( ,,,,,,

,, +-+= åå å hhhu



 

5. GEMS TSolMod built-in multi-site mixing models and activity coefficients  v.3.6 (D. Kulik, T. Wagner, S.Nichenko) 

3 

     (5.1-13) 

where  

   (5.1-14). 

In earlier versions of GEMS, this could be done only in Phase definition scripts which con-
tained all the specific hj,s,m numbers for a particular sublattice mixing model. This slowed cal-
culations down and precluded such phase definitions from being used in GEMS3K kernel 
and, thus, in any reactive mass transport or other coupled codes. This work represents an ex-
tension that enables built-in ideal or non-ideal multi-site mixing models also in GEMS3K. For 
this extension in TSolMod class, it is necessary to use an array of hj,s,m numbers arranged as a 
sequence of n(Lk) matrices , each having n(Xk) rows and n(Mk) columns. These matri-

ces will be arranged in (part of) a MoiSN array (to be created in the MULTI data structure) 
then passed as a pointer into TSolMod class instance. The moieties will be arranged in a 
common list (without duplicate entries) for the solution phase. If the same cation or anion oc-
curs in different sublattices then it must be considered as a different moiety on each sublattice 
site. For example, in ferrites, divalent and trivalent cations may be redistributed between tet-
rahedral and octahedral sites, e.g. in Ni-ferrite:  (Ni1-zFeIIIz)Tet(NizFeIII2-z)OctO4, where 0 < z < 1 
is the extent of inversion which depends on temperature.  At given temperature, e.g. setting z 
= 0.8, the Fe-Ni ferrite system may be represented using two end members: (Ni0.2FeIII0.8)Tet 
(Ni0.8FeIII1.2)OctO4 and (FeII0.2FeIII0.8)Tet (FeII0.8FeIII1.2)OctO4. Note that Ni cation on the Tet sub-
lattice is not the same moiety as Ni cation on the Oct sublattice. If vacancies are considered 
on different sites, the same applies to vacancies. 
5.1.1. Coding sublattices in end-member formulae 
The most versatile way of providing the information about moieties occupancies on sites in 
the Phase definition seems to be through the formulae of end members. To do this, the formu-
lae syntax needs to be extended. For example, the usual formulae of feldspar end members are  

KAlSi3O8  (microcline);      NaAlSi3O8   (albite);         CaAl2Si2O8  (anorthite)   etc.  

This format does not contain information about sites and moieties that substitute on them. 
However, this information can be incorporated e.g. in the following way:   
{K}:{Al}{Si}3:O8     {Na}:{Al}{Si}3:O8      {Ca}:{Al}2{Si}2:O8 

Essential feature here is that each moiety (incl. vacancy  Va ) is taken in the {} braces; the co-
lon ‘:’ separates sublattice sites which must follow the same order in all end members. The 
hj,s,m  numbers  appear just as stoichiometry coefficients after moieties. Upon parsing the for-
mula, the number of sublattices is counted by encountered colons ‘:’ (two in the above exam-
ple), and the moieties are collected in a list along with their site-moiety multiplicity h num-
bers and the site index. This list can then be merged into the overall list of n(Mk) moieties for 
the phase, and the h  numbers then assigned to  tables, the sequence of which forms the 

MoiSN array. The same ion can be represented as different moieties by adding the moiety in-
dex after species name. In the above example of ferrite with cation inversion, the formulae of 
end members will look like this (default valence of IC Ni is 2 and that of IC Fe is 3): 
{Ni}0.2{Fe}0.8:{Ni}0.8{Fe}1.2:O4     

{Fe|2|}0.2{Fe|3|}0.8:{Fe|2|}0.8{Fe|3|}1.2:O4  
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In the former end member, Ni is present on both sites, so the program creates two moieties: 
[Ni]0 and [Ni]1; it also creates two moieties for divalent Fe: [Fe]0 and [Fe]1. By analyzing 
the latter end member, [Fe|3|]0 and [Fe|3|]1 will be added to list of moieties, and so on.  
 
Chemical formulae of DCs are parsed in GEM-Selektor using the syntax that is now extend-
ed, as shown below in boldface: 
 
<formula> ::= <fterm> | <fterm> <charge>  
<fterm>   ::= <icterm> | <fterm> <icterm> | 
              <site_term> : | <fterm> <site_term> :  
<site_term> ::= <moiety> | <site_term> <moiety>  
<moiety>  ::= {<elem>} | {<elem>} <elem_st_coef> 
<icterm>  ::= <elem> | <elem> <elem_st_coef>  
<elem>    ::= (<fterm>) | [<fterm>] | 
              <isotope_mass><icsymb><valence> |  
              <isotope_mass><icsymb> |  
              <icsymb><valence> | <icsymb>   
<charge>  ::= +<real> | -<real> | + | - | @  
<elem_st_coef> ::= <real>  
<icsymb>  ::= <Capital_letter> | <icsymb><lcase_letter>  
              | <icsymb>_ | Va 
<valence> ::= |-<integer>| | |+<integer>| | |<integer>|  
<isotope_mass> ::= /<integer>/  
<integer> ::= <num>  
<num>     ::= <digit> | <num><digit>  
<digit>   ::= 0 |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9  
<real>    ::= <num>.<num> | <num>. | .<num> | <num> 
 
In the <elem> term, up to three levels of nesting is allowed. The vertical bar "|" means "or", 
i.e. one selection from several possible values or terms. The “Va” in <icsymb> means “vacan-
cy” and should be ignored everywhere except where moieties and site terms are analyzed. 
When the formula parser is called for checking the DComp or ReacDC formulae, all the { and 
} brackets must be replaced with ( and ) respectively, and colons : removed.  
 
Otherwise, the site index should be incremented upon encountering the colon ‘:’. The newly 
encountered moieties (including Va) is put into square brackets, appended with the sublattice 
index, and then added to the list of moieties, if not already present there, and the moiety index 
and site index are then used for inserting the respective occupancy number (if given after ‘}’, 
1 by default) into the occupancy table, which must exist for all end members in the phase. The 
strict order of site terms is essential. The total of moiety occupancies (the site multiplicity) for 
a given site is checked to be the same for this site term in all end members (see eq 5.1-6).   
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5.2. Non-ideal site-interaction part of the end-member activity term 
          

To represent intra-site non-ideal interactions for substitutions of moieties on sublattices, the 
approach of Berman and Brown (1984), Berman (1990) is applied because of its relative sim-
plicity and compatibility with ‘petrologic’ style of defining end members with more than one 
moiety on a sublattice site. So far, this approach ignores cross-site interactions (which at least 
partially can be accounted for using the reciprocal terms).  
In our notation, the ideal contribution to the end member activity used in Berman’s models,  

  m Î Mk   s Î Xk   j Î Lk (5.2-1) 

is shown to be equivalent to eq (5.1-8) because from eq (5.1-6), .  

The non-ideal contribution to end-member activity (see eq 5.1-2) is defined as the sum of  

   s Î Xk   j Î Lk    (5.2-2) 

Furthermore,  

   t Î Ws (5.2-3) 

where the index m refers only to moieties that are present on s-th site in j-th end member; Qs,m 

is the number of d, e, f  subscripts equal to m (0, 1 or 2); Q is the order of interaction (symmet-

ric: 1; asymmetric: 2); and Ws is the subset of indexes p of entries in the list of interaction pa-
rameters that refer to s-th sublattice. The d, e, or f subscript can be an index m of any moiety 
that exists on the s-th site. Hence, Wdef,s is the interaction parameter for a particular combina-
tion of moieties substituting each other on the s-th site. The T,P dependence of the interaction 
parameter is represented, as usual, by three coefficients a, b, and c (J,K,bar):  

W = a - b×T + c×P       (5.2-4) 

In case of symmetric interaction, the f subscript does not exist, and eq (5.2-3) takes the form 

        (5.2-5) 

where  (eq 5.1-6). For the asymmetric interactions,  

   (5.2-6) 
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where either d and e or e and f indexes refer to the same moiety on s-th site in the case of a 
pseudo-binary interaction, and all three indexes are different in a ternary interaction.     

In addition to tables  and  taken over from the calculation of ideal contributions 

to end member activities (see Section 5.1), another set of tables  is needed in the algo-

rithm to collect the contributions to terms  (see eq 5.2-3).  

In the TSolMod class implementation, the setup of interaction parameters (IP) is done in the 
Phase definition record. Upon calculation of equilibria, the IP list is passed automatically into 
the TSolMod instance for calculation of end-member activity coefficients. In the microscopic 
non-ideality model, the IP list needs to be arranged in the following format: 
 
IP index     Site index   Moiety indexes        IP coefficients  (J, K, bar) 

p  s d e f  a b c 
0  0 0 1 -1  -6000 -1.3 0.4 

1  1 3 3 4  17000 5.1 0.1 

…  … … … …  … … … 

 
IP coefficients refer to eq (5.2-4), Wdef,s = a - b×T + c×P  (note the minus sign at bT term), T in K, P 

in bar, a in J/mol. 
 

Example: Muscovite (white mica) solid solution (Parra et al. 2002) 
 
End-members:  
muscovite (mu), celadonite (cel), ferrous celadonite (fcel), Na-celadonite (ncel), Na-ferrous 
celadonite (nfcel), paragonite (pa), and pyrophyllite (prl). 
 
Moiety- sublattice site allocation table (encoded in end-member formulae). 
 

                 Sublattice 

End member 

A 
(0) 

M23 
(1) 

T2 
(2) 

T1 
(3) 

End-member formula  
(as written in DComp record) 

(0)  fcel K Al Fe Si2 Si2 {K}:{Al}{Fe}:{Si}2:{Si}2:O10(OH)2 

(1)  cel K Al Mg Si2 Si2 {K}:{Al}{Mg}:{Si}2:{Si}2:O10(OH)2 

(2)  mu K Al2 Al Si Si2 {K}:{Al}2:{Al}{Si}:{Si}2:O10(OH)2 

(3)  nfcel Na Al Fe Si2 Si2 {Na}:{Al}{Fe}:{Si}2:{Si}2:O10(OH)2 

(4)  ncel Na Al Mg Si2 Si2 {Na}:{Al}{Mg}:{Si}2:{Si}2:O10(OH)2 

(5)  pa Na Al2 Al Si Si2 {Na}:{Al}2:{Al}{Si}:{Si}2:O10(OH)2 

(6)  prl Va Al2 Si2 Si2 {Va}:{Al}2:{Si}2:{Si}2:O10(OH)2 

 
 

jms,h ys,m

f j,s j

msjRT ,,lng
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Sublattice site interaction parameters (J, K, bar). 
 
WKKNa,A = 19460 - 1.65×T - 0.46×P 
WKNaNa,A = 12230 - 5.0×T + 0.67×P 
WKKVa,A = 35000 + 25.0×T – 0.85×P 
WKVaVa,A = 45000 + 10.0×T – 0.85×P 
WNaNaVa,A = 40000 + 5.0×T 
WNaVaVa,A = 40000 + 5.0×T 
WKNaVa,A = 95480 +19.13 ×T – 0.745 ×P 
WAlMg,M23 = –30500 + 15.0×T + 0.78×P 
WAlFe,M23 = –5500 + 15.0×T + 0.65×P 
WMgFe,M23 = 0 
WAlSi,T2 = 0 

 

In GEMS Phase window (Page 3), the recalculation results in the following allocation table: 
 
End member- moiety multiplicity number table (multiplicity numbers can be non-integer). 
 
m 0 1 2 3 4 5 6 7 8 
j {K}0 {Al}1 {Fe]}1 {Si}2 {Si}3 {Mg}1 {Al}2 {Na}0 {Va}0 
0 1 1 1 2 2 0 0 0 0 
1 1 1 0 2 2 1 0 0 0 
2 1 2 0 1 2 0 1 0 0 
3 0 1 1 2 2 0 0 1 0 
4 0 1 0 2 2 1 0 1 0 
5 0 2 0 1 2 0 1 1 0 
6 0 2 0 2 2 0 0 0 1 

Indexes m and j are shown for the reader’s convenience 

To set up interaction parameters, remake the Phase record and set the Berman (B) built-in (S) 
model with total number of input interaction parameters (in this example, 11). In Page 3 of 
Phase window, you will see a combined list filled with zeros.  
As shown below, for each interaction parameter, the indexes of sublattice s and moieties d,e,f 
should be entered into four ipxT colums (for a symmetric interaction parameter, index f should 
be set to -1). For each moiety, its sublattice index can be found right after its name, e.g. {K}0. 
For example, the parameter WKKNa,A = 19460 - 1.65×T - 0.46×P will be set as shown below: 

 
s d e f a b c 

ipxT[0] ipxT[1] ipxT[2] ipxT[3] ph_cf[0] ph_cf[1] ph_cf[2] 
0 0 0 7 19460 -1.65 -0.46 
… … … … … … … 

 
The complete list for this example is shown below. The interaction parameters (rows) can be 
given in an arbitrary sequence. Two rows with zero IPs can, in principle, be dropped (by re-
making the Phase record and setting the number of rows to 9 instead of 11). However, the se-
quence of end members and moieties is essential; if it changes, the indexation in ipxT col-
umns must be revised according to the new moiety allocation table. 
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Interaction parameters setup in Phase record for the Muscovite example. 

ipxT[0]* ipxT[1] ipxT[2] ipxT[3] ph_cf[0] ph_cf[1] ph_cf[2] 
0 0 0 7 19460 -1.65 -0.46 
0 0 7 7 12230 -5 0.67 
0 0 0 8 35000 25 -0.85 
0 0 8 8 45000 10 -0.85 
0 7 7 8 40000 5 0 
0 7 8 8 40000 5 0 
0 0 7 8 95840 19.13 -0.745 
1 1 5 -1 -30500 15 0.78 
1 1 2 -1 -5500 15 0.65 
1 5 2 -1 0 0 0 
2 6 3 -1 0 0 0 

*This column contains the index of sublattice 

  
Worked test examples of multi-site solid solution models with Berman microscopic non-
ideality will be provided in the BermanMSS test project and its documentation (TBD). 
 

5.3. Reciprocal part of the end-member activity term 
The typical multi-site solid solution with two or more sublattices and two or more moieties 
substituted on each sublattice is called reciprocal. Meaning of this term is best illustrated us-
ing the system {A,B}{X,Y} (e.g. Wood and Nicholls, 1978; Hillert, 2001). All possible com-
positions can be represented on a ‘composition square’ formed by four possible end members: 
AX, BX, AY, BY. There are four end members, but only three are needed to describe any 
bulk composition of this solid solution phase. For instance, the center of the square can be ob-
tained by mixing equal amounts of either AX and BY or AY and BX, hence the name ‘recip-
rocal’. Any three of four end members can be declared as ‘independent’, while the remaining 
one will be ‘dependent’ because it’s composition and thermodynamic properties can be ob-
tained from that of ‘independent’ end members and that of a reciprocal reaction 
AY + BX  AX + BY        (5.3-1) 

with a standard molar Gibbs energy effect of reaction 

 DoG(A,B)(D,E) = GoAX + GoBY - GoAY - GoBX 

For example, if the BE end member is declared as ‘dependent’ then it’s standard molar Gibbs 
energy can be obtained from eq (5.3-1) as GoBY = DoG(A,B)(X,Y) + GoAY + GoBX - GoAX , provid-
ed that the Gibbs energy effect of the reciprocal reaction is known (e.g. fitted from the exper-
imental data). There is also a condition of internal equilibrium: 𝜇#$ + 𝜇&' = 𝜇#' + 𝜇&$ 
(Wood and Nicholls, 1978). Following the derivations in this paper, assuming random ideal 
mixing on both sublattices, the chemical potentials of end members in this system are:  

𝜇#$ = 𝐺#$* + 𝑅𝑇ln/𝑦1,#𝑦3,$4 − 𝑦1,&𝑦3,'ΔG(#,&)($,')*  

𝜇&' = 𝐺&'* + 𝑅𝑇ln/𝑦1,&𝑦3,'4 − 𝑦1,#𝑦3,$ΔG(#,&)($,')*  

𝜇#' = 𝐺#'* + 𝑅𝑇ln/𝑦1,#𝑦3,'4 + 𝑦1,&𝑦3,$ΔG(#,&)($,')*  

𝜇&$ = 𝐺&$* + 𝑅𝑇ln/𝑦1,&𝑦3,$4 + 𝑦1,#𝑦3,'ΔG(#,&)($,')*  

⇔
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Comparing these with the general form of the chemical potential, we see that the terms like 
𝑦1,&𝑦3,'ΔG(#,&)($,')*  stay in place of one more activity coefficient like 𝛾#$: 

𝑅𝑇ln𝛾#$ = −𝑦1,&𝑦3,'ΔG(#,&)($,')*  

𝑅𝑇ln𝛾&' = −𝑦1,#𝑦3,$ΔG(#,&)($,')*  

𝑅𝑇ln𝛾#' = +𝑦1,&𝑦3,$ΔG(#,&)($,')*  

𝑅𝑇ln𝛾&$ = +𝑦1,#𝑦3,'ΔG(#,&)($,')*  

Thus, the complete form of the end-member chemical potential will be  

 𝜇; = 𝜇;* + 𝑅𝑇 ln 𝑥; + 𝑅𝑇ln𝜆; + 𝑅𝑇ln𝑓; + 𝑅𝑇ln𝛾;      (5.3-2) 

where 𝑅𝑇ln𝛾; is the reciprocal activity coefficient term, which turns to zero (ideal behaviour) 
only if the Gibbs energy effect of the reciprocal reaction (5.3-1) ΔG(#,&)($,')* = 0. This for-
malism can be extended for the case when several moieties substitute on each of two sublat-
tices (Wood and Nicholls, 1978; Aranovich, 1991). The number of end members in this case 
is M0M1; the number of independent end members is M0+M1-1; and the number of all possi-
ble reciprocal reactions is the number of combinations C(M0M1, M0+M1-1)/4.    
Unfortunately, it is very difficult to generalize this “reciprocal reaction” formalism to solid 
solutions with simultaneous substitutions in three or more sublattices. For the general case, 
Sundman and Ågren (1981) suggested a method related to the site fractions matrix Y made of 
the 𝑦@,A  elements (see eq 5.1-5). The total Gibbs energy per mole of k-th phase is represented 
as 

  GB = 𝐺B
CDE − 𝑇𝑆B,GH

I*JE + 𝐺BK$         (5.3-3) 

where GB = ∑ 𝜇;𝑥;;  ; 𝑆B,GH
I*JE = ∑ 𝑥;∆𝑆;̅

(I*J)
;  where ∆𝑆;̅

(I*J) is given by eq (5.1-4); 𝐺BK$ =
𝑅𝑇∑ 𝑥;ln𝑓;;  where ln𝑓; is given by eq (5.2-2); and 𝐺B

CDEis the so-called frame-of-reference 
Gibbs energy (Sundman and Ågren, 1981; Hillert, 1998) .  

For the substitution on one sublattice, 𝐺B
CDE = ∑ 𝑦1,AO

PO
AO

𝐺AO
* = ∑ 𝑥;𝐺;*; .  

For simultaneous substitutions on two sublattices, 𝐺B
CDE = ∑ ∑ 𝑦1,AO𝑦3,AQ

PQ
AQ 𝐺AOAQ

*PO
AO

 where 
𝐺AOAQ
*  is the standard-state Gibbs energy of the end-member compound made of a moiety 𝑚1 

on sublattice 0 and moiety 𝑚3
 on sublattice 1.  

For three sublattices, 𝐺B
CDE = ∑ ∑ ∑ 𝑦1,AO𝑦3,AQ𝑦S,AT

PT
AT 𝐺AOAQAT

*PQ
AQ

PO
AO

, and so on.  

Sundman and Ågren (1981) suggested the following general notation: 

𝐺B
CDE = ∑ 𝐺U*℘U(𝑌)U

         (5.3-4) 

where I is the “component array” that defines one moiety on each sublattice, and ℘U(𝑌) 
stands for the corresponding product of site fractions from the Y matrix. The CEF (compound 
energy formalism) eq (5.3-3) assumes that in any end member, there is exactly one moiety on 
each sublattice. In the formalism considered in Sections 5.1 and 5.2, end members with frac-
tional site occupation are allowed, i.e with two or more moieties on one sublattice with end 
member site fractions 𝑦;,@,A* = XY,Z,[

XZ
 (see eq 5.1-6). To account for this case, we assume that 

℘U1(𝑌) = ℘;(𝑌) is the product of sums 𝑦@,\
(;) : 

 𝑦@,\
(;) = ∑ 𝑦;,@,A* 𝑦@,AA = 3

XZ
∑ 𝜂;,@,A𝑦@,AA .      (5.3-5) 
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Clearly, the CEF simply means that there is only one m-th non-zero element 𝜂;,@,A = 𝜂@	per j-
th end member in s-th sublattice, so the 𝑦@,\

(;) turns into 𝑦@,AY , the site fraction of moiety 𝑚; 
which is present on s-th site in j-th end member formula. 
The chemical potential of j-th end member can be obtained as a partial derivative of eq (5.3-3) 
on the amount of j-th end member, 

 𝜇; = 𝐺B + ∑ ^ _`a
_bZ,[Y

− ∑ _`a
_bZ,[

A c	@ T,P,nl≠j 
       (5.3-6). 

(Sundman and Ågren, 1981). Because of the additivity of 𝐺B  function, one can write  

𝑅𝑇ln𝛾; = 𝐺B
CDE + ∑ ^_`a

def

_bZ,[Y
− ∑ 𝑦@,A

_`a
def

_bZ,[
A c − 𝐺;*,			𝑠	 ∈ 	 ΞB,@ 			𝑚	 ∈ 	MB  (5.3-7)  

where 

 _`a
def

_bZ,[Y
= ∑ ℘k(𝑌) ∙

mY,Z,[Y

bZ,[
∙ 𝐺k*,				𝑙	 ∈ 	 𝐿Bk          (5.3-8) 

 _`a
def

_bZ,[
= ∑ ℘k(𝑌) ∙

mp,Z,[
bZ,[

∙ 𝐺k*k ,			𝑙	 ∈ 	 𝐿B         (5.3-9) 

Here, 𝛿;,@,A   is the special form of Kronecker’s delta: 𝛿;,@,A = 1  if 𝜂;,@,A ≠ 0, else  𝛿;,@,A = 0. 

There are two limitations of the formalism eqs (5.3-4) to (5.3-9): (i) partially-substituted end 
members are not allowed; (ii) all possible end members must be included into the model. If 
these two conditions are not satisfied then the reciprocal energy contribution terms cannot be 
computed correctly and must be disabled.   
From eq. (5.3-3) it is evident that the configurational entropy contribution is the same in Ber-
man approach and in CEF model, whereas the excess energy contribution in Berman model is 
not the same as in CEF. Also, the reciprocal energy contributions were ignored in most 
known applications of Berman’s model (maybe except those for systems with two sublattices, 
cf. Aranovich 1991). Therefore, in TSolMod library, two models of this kind are implement-
ed: Berman (coded ‘B’) and CEFmod (coded ‘$’), see Appendix 5.1.  
 

5.4.  Non-ideal excess energy part of the end-member activity term in CEF model 
In the Compound Energy Formalism (CEF), cf.(Sundman and Ågren 1981; Hillert 1988, 
2001), the total Gibbs energy 𝐺B  per mole of k-th phase is represented by eq (5.3-3) 

  𝐺B = 𝐺B,CDE − 𝑇𝑆B,GH
I*JE + 𝐺B,Dt,    with the 𝐺B,CDE term given by eq (5.3-4); 

  𝑆B,GH
I*JE = ∑ 𝑥;𝑆;̅

(I*JE)
;      where 𝑆;̅

(I*JE) is given by eq (5.1-4),  

in which 𝜂;,@,A = 𝜂@  for any end member where exactly one moiety on each sublattice must 
exist. Both terms are the same as considered above for Berman’s approach, but the excess 
Gibbs energy term is represented in a different way than eq (5.2-2): 

 𝐺B,Dt = ∑ ∑ ℘Uu(𝑌) ∙ 𝐿UuUuuv1
       (5.4-1) 

where 𝐼𝑍	is the component array that defines the excess interactions, and ℘Uu(𝑌) stands for 
the corresponding product of site fractions from the 𝑌 matrix. The interaction parameters 𝐿Uu 
depend on temperature and pressure, and may depend on composition, which is usually repre-
sented as Redlich-Kister polynomials of degree 𝑟	 ≤ 3: 



 

5. GEMS TSolMod built-in multi-site mixing models and activity coefficients  v.3.6 (D. Kulik, T. Wagner, S.Nichenko) 

11 

 𝐿U3(') = ∑ 𝐿U3C|
C}1 /𝑦@,A3 − 𝑦@,AS4

C
        (5.4-2) 

where 𝑚1 and 𝑚2 are indices of two moieties on sublattice  𝑠  according to the component 
𝐼1. The adopted  T,P dependence is the same as in the multicomponent Redlich-Kister model:  

𝐿U3C = 	𝑎 + 	𝑏 ∙ 𝑇 + 𝑐 ∙ ln𝑇 + 	𝑑 ∙ 𝑃        (5.4-3) 

 The compositional dependence eq (5.4-2) is used mainly in single-sublattice models where 
there is one (or a few) interaction parameter. For instance, in a binary solid solution (A,B)L 
the 𝐺B,Dt  function eq (5.4-1) with Z = 1 takes the form:  𝐺B,Dt = 𝑦3,#𝑦3,&𝐿#&, so the Redlich-
Kister polynomial expansion to 2nd or 3rd degree is reasonable.  
Here and below, in the interaction parameter index, sublattices are separated by colons, e.g. 
𝐿#&:� means a parameter of interaction between moieties A and B on the first sublattice when 
the second sublattice is occupied by moiety L, and so on. The order of sublattices is fixed and 
corresponds to that in the formulae of end members (see section 5.1.1). In each sublattice, on-
ly binary interactions are considered. Z can be seen as the parameter order such that 0 < 𝑍 ≤
ΞB (the number of sublattices with occurring substitutions). 
If mixing occurs in two or more sublattices, the number of parameters will be large enough 
even if 𝐿Uu = 	 𝐿Uu1  are composition-independent (i.e. regular). For instance, in a reciprocal 
system (A,B)(L,M),  𝑍 ≤ 2,  and the 𝐺B,Dt function has 5 interaction parameters: 

𝐺B,Dt = 𝑦3,#𝑦3,&𝑦S,�𝐿#&:� + 𝑦3,#𝑦3,&𝑦S,P𝐿#&:P + 𝑦3,#𝑦S,�𝑦S,P𝐿#:�P + 𝑦3,&𝑦S,�𝑦S,P𝐿&:�P +
𝑦3,#𝑦3,&𝑦S,�𝑦S,P𝐿#&:�P        (5.4-4) 

In (A,B,C)(L,M) system, 𝑍 ≤ 2, but there are 3 moieties substituting in the first sublattice, so 
𝐺B,Dt has 12 parameters: 

𝐺B,Dt = 𝑦3,#𝑦3,&𝑦S,�𝐿#&:� + 𝑦3,#𝑦3,�𝑦S,�𝐿#�:� + 𝑦3,&𝑦3,�𝑦S,�𝐿&�:� + 𝑦3,#𝑦3,&𝑦S,P𝐿#&:P +
𝑦3,#𝑦3,�𝑦S,P𝐿#�:P + 𝑦3,&𝑦3,�𝑦S,P𝐿&�:P + 𝑦3,#𝑦S,�𝑦S,P𝐿#:�P + 𝑦3,&𝑦S,�𝑦S,P𝐿&:�P +
𝑦3,�𝑦S,�𝑦S,P𝐿�:�P + 𝑦3,#𝑦3,&𝑦S,�𝑦S,P𝐿#&:�P + 𝑦3,#𝑦3,�𝑦S,�𝑦S,P𝐿#�:�P +
𝑦3,&𝑦3,�𝑦S,�𝑦S,P𝐿&�:�P         (5.4-5). 

In an (A,B)(L,M)(X,Y) system, 𝑍 ≤ 3, and 𝐺B,Dt function has 19 interaction parameters: 
𝐺B,Dt = 𝑦3,#𝑦3,&𝑦S,�𝑦�,$𝐿#&:�:$ + 𝑦3,#𝑦3,&𝑦S,P𝑦�,$𝐿#&:P:$ + 𝑦3,#𝑦S,�𝑦S,P𝑦�,$𝐿#:�P:$ +
𝑦3,&𝑦S,�𝑦S,P𝑦�,$𝐿&:�P:$ + 𝑦3,#𝑦3,&𝑦S,�𝑦�,'𝐿#&:�:' + 𝑦3,#𝑦3,&𝑦S,P𝑦�,'𝐿#&:P:' +
𝑦3,#𝑦S,�𝑦S,P𝑦�,'𝐿#:�P:' + 𝑦3,&𝑦S,�𝑦S,P𝑦�,'𝐿&:�P:' + 𝑦3,#𝑦S,�𝑦�,$𝑦�,'𝐿#:�:$' +
𝑦3,&𝑦S,�𝑦�,$𝑦�,'𝐿&:�:$' + 𝑦3,#𝑦S,P𝑦�,$𝑦�,'𝐿#:P:$' + 𝑦3,&𝑦S,P𝑦�,$𝑦�,'𝐿&:P:$' + 

𝑦3,&𝑦S,�𝑦S,P𝑦�,$𝑦�,'𝐿&:�P:$'+𝑦3,#𝑦S,�𝑦S,P𝑦�,$𝑦�,'𝐿#:�P:$'+𝑦3,#𝑦3,&𝑦S,P𝑦�,$𝑦�,'𝐿#&:P:$' +
𝑦3,#𝑦3,&𝑦S,�𝑦�,$𝑦�,'𝐿#&:�:$' + 𝑦3,#𝑦3,&𝑦S,�𝑦S,P𝑦�,'𝐿#&:�P:' +
𝑦3,#𝑦3,&𝑦S,�𝑦S,P𝑦�,$𝐿#&:�P:$+𝑦3,#𝑦3,&𝑦S,�𝑦S,P𝑦�,$𝑦�,'𝐿#&:�P:$'    (5.4-6). 

One additional coefficient per parameter for the temperature dependence would lead to 38 pa-
rameter coefficients to fit. This shows that, in multi-sublattice models, 𝐿Uu should be treated 
as (pseudo)regular interaction parameters that are independent of composition. In two-
sublattice models, if a lot of good-quality data is available for parameter fitting, subregular 
𝐿Uu = 𝐿Uu1 + 𝐿Uu(𝑦@,A3 − 𝑦@,AS)3  can be considered as an extraordinary option.  

The chemical potential of j-th end member can be obtained as a partial derivative of eq (5.3-3) 
on the amount of j-th end member (eq. 5.3-6) [1981SUN/ÅGR]. Because of the additivity of 
𝐺B  function eq (5.3-2), one can write for the partial excess Gibbs energy (activity coefficient) 
of j-th end member:  
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𝑅𝑇ln𝛾; = 𝐺B,Dt + ∑ ^_`a,e�
_bZ,[Y

− ∑ 𝑦@,A
_`a,e�
_bZ,[

A c@ , 𝑠	 ∈ 	 ΞB, 𝑚	 ∈ 	MB   (5.4-7)  

where 

 
_`a,e�
_bZ,[Y

= ∑ ∑ ℘�u(𝑌) ∙
m�,Z,[Y

bZ,[
�𝐿�u + 𝑦@,A

_���
_bZ,[

��uuv1 ,				𝐽	 ∈	?B       (5.4-8) 

 
_`a,e�
_bZ,[

= ∑ ∑ ℘�u(𝑌) ∙
m�,Z,[
bZ,[

�𝐿�u + 𝑦@,A
_���
_bZ,[

��uuv1 ,				𝐽	 ∈	?B      (5.4-9) 

Here, 𝛿;,@,A   is the special form of Kronecker’s delta function: 𝛿;,@,A = 1  if 𝜂;,@,A ≠ 0, else  
𝛿;,@,A = 0. If 𝐿�u is independent of composition then and _���

_bZ,[
= 0, and two above equations 

take the form: 

  
_`a,e�
_bZ,[Y

= ∑ ∑ ℘�u(𝑌) ∙
m�,Z,[Y

bZ,[
𝐿�u�uuv1 ,				𝐽	 ∈	?B         (5.4-10) 

 
_`a,e�
_bZ,[

= ∑ ∑ ℘�u(𝑌) ∙
m�,Z,[
bZ,[

𝐿�u�uuv1 ,				𝐽	 ∈	?B        (5.4-11). 

If 𝐿Uu = 𝐿Uu1 + 𝐿Uu(𝑦@,A3 − 𝑦@,AS)3  then … 

 
 

5.5.  Example: (Li,K)(F,Cl) system modelling with CEF 
An example of the CEF application for the (Li,K)(F,Cl) solid solution system modelling is 
presented here. Parameters are not optimal and are given below for the sake of demonstration. 
They are independent of temperature and pressure. 

 

Parameter J/mol 
𝐿Li,K:Cl 5000 
𝐿Li,K:F 750 
𝐿K:F,Cl 2300 
𝐿Li:F,Cl -820 
𝐿Li,K:F,Cl 1200 

 
In this reciprocal system, four end-members are considered: 

End member End-member sublattice formula  
(as written in DComp record) 

LiF {Li}:{F}: 

LiCl {Li}:{Cl}: 

KF {K}:{F}: 

KCl {K}:{Cl}: 
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The end member moiety-multiplicity table looks as follows: 
 

m 0 1 2 3  
j {Li}0* {F}1 {K}0 {Cl}1 End member 
0 1 1 0 0    LiF 
1 0 1 1 0    KF 
2 1 0 0 1    LiCl 
3 0 0 1 1    KCl 

*The digit indicates the index of sublattice. 

 
Equation (5.4-1) expands into the form similar to eq (5.4-4): 

𝐺B,Dt = 𝑦1,�G𝑦1,�𝑦3,�𝐿Li,K:F + 𝑦1,�G𝑦1,�𝑦3,�k𝐿Li,K:Cl + +𝑦1,�G𝑦3,�𝑦3,�k𝐿Li:F,Cl + 𝑦1,�𝑦3,�𝑦3,�k𝐿K:F,Cl
+ 𝑦1,�G𝑦1,�𝑦3,�𝑦3,�k𝐿Li,K:F,Cl 

To set up five interaction parameters from eq (5.4-1), remake the Phase record and set the 
CEF (‘$’) built-in (‘S’) model with four ipxT columns for indices and the total number of in-
put interaction parameters (in this example, 5). In Page 3 of the Phase window, you will see a 
combined list filled with zeros. Click “Calculate” toolbar button to see the end member moie-
ty-multiplicity table and the indexes of moieties (columns) in that table. 
As shown below, for each interaction parameter, the permutation of moieties d,e (in sublattice 
0) and f,g (in sublattice 1) requires four ipxT columns, i.e. two indices per sublattice in order to 
depict pair-wise interactions. Therefore, interaction parameters given above (LLi,K:Cl, LLi,K:F, 
LLi:F,Cl, LK:F,Cl, LLi,K:F,Cl) should be set as shown below: 
 

 e (0)* f (0)* g (1)* h (1)* a** b c d 

ipxT[0] ipxT[1] ipxT[2] ipxT[3] ph_cf[0] ph_cf[1] ph_cf[2] ph_cf[3] 
0 2 1 -1 750 0.0 0.0 0.0 
0 2 3 -1 5000 0.0 0.0 0.0 
0 -1 1 3 2300 0.0 0.0 0.0 
2 -1 1 3 -820 0.0 0.0 0.0 
0 2 1 3 1200 0.0 0.0 0.0 

*The digit indicates the index of sublattice. 
**Coefficients a, b, c, d describe T,P dependence (eq 5.4-3) of interaction parameter. 

 

The unused index (all parameters but the last one) is set as -1 in the respective ipxT column. 
Note that, unlike in the Berman model, no ipxT column with index of sublattice is used in 
CEF setup. This is possible because this index can be extracted from the moiety index (i.e. the 
column index in the moiety-multiplicity table). 
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5.5.  Modified Bragg-Williams Model 
Modified Bragg-Williams (MBW) model represents a modification of the Compound Energy 
Formalism (CEF) that allows for more complex description of the Gibbs energy surface to 
emulates both short-range (SRO) and long-range (LRO) ordering (Liu et al., 2018). 

In MBW model, as well as in CEF model, the total Gibbs energy 𝐺B  per mole of k-th phase is 
represented by eq (5.3-3), 𝐺B = 𝐺B,CDE − 𝑇𝑆B,GH

I*JE + 𝐻B,AGt. The reference frame term, 𝐺B,CDE, 
and the configurational entropy, are expressed respectively by equations: 

𝐺A
CDE = ∑ 𝐺U*℘U(𝑌)U           (5.5-1) 

𝑆B,GH
I*JE = −𝑅∑ ∑ 𝑛@;@ 𝑦;@𝑙𝑛/𝑦;@4       (5.5-2) 

Both terms are the same as considered above for Berman and for CEF approaches. The en-
thalpy of mixing term for the two-sublattice case with two primary end members is expressed 
by eq (5.5-3): 

 
𝐻Amod = 𝑥3𝑥S �𝑥3/𝐿A:B,AS + 𝐿A:B,A3 + 2𝛥𝐻A:B1 4 + 𝑥S/𝐿A:B,B3 + 𝐿A:B,BS + 2𝛥𝐻A:B1 4¡

+𝑥3𝑥�/𝑥3𝐿A:B,AS + 𝑥�𝐿A:B,AS 4 + 𝑥S𝑥�/𝑥S𝐿A:B,B3 + 𝑥�𝐿A:B,B3 4 + 𝑥�𝛥𝐻A:B1

+𝑥3𝑥S𝑥�/𝐿A:B,AS + 𝐿A:B,BS + 𝐿A:B,A3 + 𝐿A:B,B3 + 2𝛥𝐻A:B1 4(1 − 𝜎)

 (5.5-3) 

where the parameters are described via the first-order Redlich-Kister polynomials   

𝐿1,A:B = 𝐿1,0,A:B + /𝑦3,# − 𝑦3,&4𝐿1,1,A:B       (5.5-4a) 

𝐿2,A:B = 𝐿2,0,A:B + /𝑦S,# − 𝑦S,&4𝐿2,1,A:B      (5.5-4b),  

 𝛥𝐻A,B1  represents the free energies of ordered and anti-ordered compounds, and σ is a correc-
tion term, which helps to adjust the level of stabilization of intermediate states by a scaling 
parameter in the range from 0.0 to 1.0.  
Site fractions and ternary end-member mole fractions are related by the equation: 

𝑦#3 = 𝑥3 + 𝑥�; 𝑦#S = 𝑥3; 𝑦&3 = 𝑥S; 𝑦&S = 𝑥S + 𝑥�     (5.5-5). 
In GEM-Selektor, interaction parameters for the MBW model can be expressed in two differ-
ent forms: 

 𝑦3,#𝑦3,&/𝑦3,# − 𝑦3,&4𝐿A:B  or  𝑦3,#𝑦3,&𝐿A:B,  

set as type 0 and 1 respectively in the column “type” of the interaction parameter table. This 
simplifies the description of interaction parameters in GEM-Selektor, while still keeping it 
quite flexible.  
To describe the interaction between moieties in the MBW model, we only have to indicate the 
indices of the involved moieties and the corresponding 𝐿 parameter. The respective sublattice 
indexes are defined by the moiety indexes during the calculations. 
As mentioned above, the MBW model allows for two types of interaction parameters: type 0 
is given in the form 𝑦D𝑦E𝑦¤𝑦¥𝑦G𝐿, and type 1 is given in the form 𝑦D𝑦E𝑦¤(𝑦¥ − 𝑦G)𝐿. To skip 
the moiety and its site fraction, the index should just be set to -1 in index table. 
 

 
 

 



 

5. GEMS TSolMod built-in multi-site mixing models and activity coefficients  v.3.6 (D. Kulik, T. Wagner, S.Nichenko) 

15 

Example table: 

index Moiety indexes type  IP coefficients  
p  e f g h i j  a b c 

0  0 2 -1 -1 -1 0  𝐿A:B 0.0 0.0 

1  0 2 -1 0 2 1  𝐿A:B 0.0 0.0 

2  0 2 1 0 2 1  … … … 

 

In this case, the first interaction parameter (p=0) between moieties 0 and 2 is expressed in the 
form 𝑦1𝑦S𝐿0:2. The second interaction parameter (p=1) is defined in the form 𝑦1𝑦S(𝑦1 −
𝑦S)𝐿0:2. And the last interaction parameter (p=2) is defined as  𝑦1𝑦S𝑦3(𝑦1 − 𝑦S)𝐿0:2. 

 
5.5.1  Example (CaCO3 – MgCO3 system) 
The MBW model definition for the CaCO3 – MgCO3 system is presented below. The CEF 
parameters for the 2-sublattice model of calcite-magnesite solid solution were computed with 
the single defect method, cf. (Liu et al., 2018). 
 

Parameter kJ/mol 

𝐿A:B,B
3,1  20.595 

𝐿A:B,B
3,3  -0.665 

𝐿A:B,A
S,1  16.21 

𝐿A:B,A
S,3  -0.75 

𝐺A,A1  0 

𝐺B,B1  0 

𝐺A,B1 = 𝛥𝐻A,B1  -4.12 

𝐺B,A1 = 𝛥𝐻A,B1  -4.12 
 
Four end-members need to be considered in this example: 

                 End member End-member formula  
(as written in DComp record) 

CaCO3 double {Ca}:{Ca}:[(CO3)2] 

CaMg(CO3)2 ordered {Mg}:{Ca}:[(CO3)2] 

CaMg(CO3)2 anti-ordered {Ca}:{Mg}:[(CO3)2] 

MgCO3 double {Mg}:{Mg}:[(CO3)2] 
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The corresponding end member- moiety multiplicity table will look like 
 

m 0 1 2 3  
j {Ca}0 {Ca}1 {Mg}0 {Mg}1 GEMS record key 
0 1 1 0 0 s   CaCO    CaCO3 
1 0 1 1 0 s   CaMgCO  CaMgCO3-Ant 
2 1 0 0 1 s   CaMgCO  CaMgCO3-Ord 
3 0 0 1 1 s   MgCO    MgCO3 

Here, the number to the right of the moiety ({Ca}0) is the index of the sublattice for this par-
ticular moiety. 

 
The interaction parameters should be expressed in the form accepted by GEMS-Selector 
package, as it was described above. The whole table (to be entered in Page 3 of the Phase 
window) is shown below.  

 
Comment e f g h i j a b c d 
dataobj ipxT[0] ipxT[1] ipxT[2] ipxT[3] ipxT[4] ipxT[5] ph_cf[0] ph_cf[1] ph_cf[2] ph_cf[3] 

Lab10 0 2 3 -1 -1 0 41190 0 0 0 

Lab11 0 2 3 0 2 1 -1330 0 0 0 

Lab20 1 3 0 -1 -1 0 32420 0 0 0 

Lab21 1 3 0 1 3 1 -1500 0 0 0 

Lab20 0 2 1 -1 -1 0 32420 0 0 0 

Lab21 0 2 1 0 2 1 -1500 0 0 0 

Lab10 1 3 2 -1 -1 0 41190 0 0 0 

Lab11 1 3 2 1 3 1 -1330 0 0 0 

DHab0 0 3 -1 -1 -1 0 -8246 0 0 0 

DHab0 1 2 -1 -1 -1 0 -8246 0 0 0 

KW123 2 1 -1 0 1 1 -130728 0 0 0 

KW123 2 1 0 0 1 1 2830 0 0 0 

KW123 2 1 2 0 1 1 -2830 0 0 0 

KW123 2 1 1 0 1 1 2830 0 0 0 

KW123 2 1 3 0 1 1 -2830 0 0 0 
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 Appendix 5.1. Built-in options for activity coefficients for end members of condensed (solid 
and liquid) non-electrolyte solution phases (GEM-Selektor v. 3.4). 
 
Code Model Equations Interaction parameters (to enter into ph_cf  array) 

G Redlich-Kister 
model (binary) 

4.2-36 to 
4.2-38 

three constant binary interaction parameters 

M Subregular model 
(binary) 

4.2-10 to 
4.2-13 

two binary interaction parameters, each represented with 
3 coefficients as a – b×T + c×P 

T Regular model (ter-
nary) 

4.2-21 to 
4.2-24 

one binary interaction parameter per pair and 1 ternary 
interaction parameter, each represented with 3 coeffi-
cients as a – b×T + c×P 

R Regular model 
(multicomponent) 

4.2-29,   
4.2-30 

one binary interaction parameter per pair of components, 
represented as  a + b×T + c×P 

V Van Laar model 
(multicomponent) 

4.2-31 to 
4.2-35 

one binary interaction parameter per pair of components, 
represented as a + b×T + c×P 
one size parameter per component (end member) in 
dc_cf array 

B Berman multisite 
(multicomponent) 

5.1-14 to 
5.2-6 

one binary or ternary interaction parameter for moieties 
on a sublattice site, represented as a – b×T + c×P 

$ CEF multisite   
(multicomponent) 

5.1-14; 
5.3-6;   
5.4-3 

one binary, ternary or quaternary interaction parameter 
for moieties on a sublattice site, represented as                 
a + b×T + c×T×ln(T) + d×P 

# MBW CEF multi-
site model (both 
LRO and SRO)   

5.5-1 to 
5.5-5 

one binary, ternary or quaternary interaction parameter 
for moieties on a sublattice site, represented as                 
a + b×T + c×T×ln(T) + d×P 

K Redlich-Kister 
(multicomponent) 

4.2-41, 
4.2-42 

four binary interaction parameters per pair of compo-
nents, represented as a + b×T + c×T×ln(T) + d×P 

L NRTL model   
(multicomponent) 

4.2-50, 
4.2-51 

two normalized binary interaction energies per pair of 
components, represented as  A + B/T + C×T + D×ln(T) 
1 parameter α per pair of components: E + F× (T-273.15) 

W Wilson model (mul-
ticomponent) 

4.2-59, 
4.2-60 

two binary interaction energies per pair of components, 
represented as exp[ A + B/T + C×T + D×ln(T) ] 

U User-defined  Must be provided as Phase scripts and parameters 
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Appendix 5.2. Modification codes for specific mixing rules (or form of temperature correc-
tion) for various EoS and activity (mixing) models in Phase wizard (GEM-Selektor v.3.4). 
  
Code Displayed message Comment 
N  Default mixing rule or 

form of interaction param-
eter coefficients  

The appropriate mixing rule or form of interaction parameter co-
efficients will be selected depending on the chosen fluid- or aque-
ous model  

W Basic Van der Waals mix-
ing rules in cubic EoS 
models (default)  

Selecting this code enables the automatically assembled gas/fluid 
phase (chosen in the AutoPhase dialog) because all (default) in-
teraction parameters are zeros  

C Constant one-term binary 
interaction parameter kij  

One coefficient per non-zero interaction parameter to be entered 
into ph_cf array  

T Temperature-dependent 
one-term binary interaction 
parameter kij 

Two coefficients per non-zero interaction parameter (Aij and Bij) 
to be entered into ph_cf array  

5  5-term Pitzer model pa-
rameter temperature de-
pendence  

Five coefficients a,b,c,d,e of the temperature dependence  a + 
b(1/T−1/298.15) + c ln(T/298.15) + d(T−298.15) + e(T−298.15)2. 
Used also in TOUGHREACT software.  

6  6-term Pitzer model pa-
rameter temperature de-
pendence  

FREZCHEM variant (TBD)  

8  8-term Pitzer model pa-
rameter temperature de-
pendence  

THEREDA variant (TBD)  

R 
Calculate reciprocal terms 
(CEF) with 'B','$' and '#' 
sublattice solution models 

All possible end members must be present in the phase definition; 
no partial site substitution allowed in end members. No additional 
parameters needed. Can be used as an option with Berman 'B', 
CEF '$' and MBW '#'   sublattice solution models. 

Note: Applicable only to non-ideal fluid models 'P', 'E', '7', as well as sublattice solid solution models, 
also in standalone GEMS3K calculations. Codes 'C' and 'T' require entering non-zero parameter coef-
ficients into ipxT and ph_cf arrays in TSolMod convention, therefore, a Phase record using them must 
be created in the modelling project before GEM calculations. 

 
 


