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Part 4. Calculation of activity coefficients in built-in TSolMod library functions of the 
GEM-Selektor code (see general description in Wagner et al., 2012) 
 
4.1. Aqueous electrolyte solutions  
Possible options for built-in models of aqueous activity coefficients in GEM-Selektor code 
v.3.2, as implemented in the TSolMod library, are summarized in Appendix 4-1.  

The chemical potential of j-th aqueous ion or complex is approximated in the GEM IPM algo-
rithm by the following expression in the uniform (mole fraction) scale (Karpov et al., 1997; 
2001): 
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where G(x) is the total Gibbs energy of the system (in moles); gj is the partial molal Gibbs en-
ergy function of j-th aqueous species at T,P of interest in the molal scale; xj is the mole quan-
tity of j-th species and

wj
x that of the water-solvent. Xw is the total mole quantity of the aque-

ous phase (including water-solvent), γj  is the internal asymmetric activity coefficient (in prac-
tical scale), and Mw = 18.0153 g mol-1 is the gram-formula mass of H2O. The two terms 
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wln− on the right-hand side convert the standard chemical potential and the 

activity coefficient from the practical asymmetrical (molality) to the rational (mole fraction) 
concentration scale. Details of the representation of calculated activities, molalities, and re-
spective “external” activity coefficients are given in Appendix 4-2. 

For the water-solvent (H2O), the following approximation of chemical potential is used:  
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The internal activity coefficient of water 
wj

γ is by default taken as unity because the mole 
amount of water 

wj
x is adjusted on GEM iterations, resulting in activity: ( )RTg

ww jj −υexp  
and mole fraction of H2O: wjj Xx

ww
=χ  less than unity at non-zero concentration of dis-

solved salts. Internal activity coefficients of aqueous species ( jγ in eqn 4.1-1) will be re-
calculated on all iterations of the GEM algorithm because these values affect chemical poten-
tials and depend on concentrations of dissolved ionic species, which are initially unknown. 

 

4.1.1. Charged aqueous species  
Equations for individual aqueous activity coefficients use the effective ionic strength I - a 
measure of a “concentration of charge”: 
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where zj is the formula charge of j-th species and mj is its molality (in moles per 1 kg H2O),  
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where Mw = 18.0153 is the gram-formula mass of H2O. Note that in ion-association aqueous 
models, the effective ionic strength, which counts only charged aqueous species, is usually 
less than the formal ionic strength obtained from the bulk concentration of a dissolved salt.  

The theory of Debye and Hückel (1923) relates the activity coefficient of aqueous ion to its 
charge and the ionic strength of the aqueous electrolyte. This is based on representing the ions 
as point charges in an ideal structureless dielectric solvent and considering long-range Cou-
lombic forces between charges of opposite sign working against disorder caused by thermal 
Brownian movement. Derivation of this theory is lengthy, but readily available from text-
books (e.g. Robinson and Stokes, 1968). The final result is called the Debye-Hückel equation: 
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There, a  (in 10-8 cm) is an average distance of approach of two ions of opposite charge (or 
the ion-size Kielland’s parameter for individual ions), and 

Aγ = 1.82483⋅106ρ0
0.5(ε0 ⋅T)-1.5      (4.1-6),  

Bγ = 50.2916ρ0
0.5(ε0 ⋅T)-0.5       (4.1-7),  

where ρ0 is density (g⋅cm-3) and ε0 is the dielectric constant of pure water at temperature T (K) 
and pressure P (bar) of interest. The latter two values are obtained internally from SUPCRT92 
subroutines (Johnson et al., 1992) incorporated into the GEMS code. At Tr = 25 oC and Pr = 1 
bar, Aγ ≈ 0.5114 and Bγ ≈ 0.3288. 

Note that eqn (4.1-5) defines the asymmetric activity coefficient )(r
jγ  in rational (mole frac-

tion) scale. Its conversion to practical (molality) scale required for γj in eqn (4-1.1) can be per-
formed, according to Helgeson et al. (1981), by adding a term ( )Σγ +−=Γ m.log 01801530110 , 
where mΣ is the sum of molalities of all dissolved species (including both charged and neutral 
ones). Thomsen (2005) defines this conversion as w

r
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j χγγ )()( =  where wjww Xx=χ is the 

mole fraction of water solvent. However, using eqn (4.1-4), it can be shown with simple alge-
braic substitutions that both corrections are equivalent. Therefore, the internal molal γj value 
of the Debye-Hückel activity coefficient eqn (4.1-5) is calculated as  

w

jwj
j X

x
IBa
IzA

10

2

10 log
1

log +
+

−
=γ

γ

γ



      (4.1-8) 

Equation (4.1-5) or (4.1-8) works well at relatively low ionic strength (0.001 ≤ I ≤ 0.1 m). At 
low ionic strength (I < 0.001 m), the denominator in eqn (4.1-5) approaches unity, converting 
it effectively into the Debye-Hückel limiting law: 
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Extension of the Debye-Hückel theory to account for short-range interactions has added a lin-
ear term to the extended Debye-Hückel equation: 
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where bγ  is a semi-empirical coefficient, either individual for a given electrolyte ion (in this 
case, eqn (4.1-10) is also called the Truesdell-Jones equation), or common for all charged 
aqueous species (Helgeson et al., 1981) in the predominant electrolyte. 

The extended equation (4.1-10) is thought to be applicable up to 1-2 molal ionic strength us-
ing bγ =0.064 (NaCl) and it was implemented with common bγ  as a built-in function in GEM-
Selektor. This function can be used either with individual Kielland ion-size parameters a j 
(collected from DComp or ReacDC records) as formerly suggested by Karpov, or with an av-
erage value of a  (in 10-8 cm) the same for all ionic species, as proposed in (Helgeson et al., 
1981). In the latter option, well-calibrated models for the pressure and temperature depend-
ence of bγ for 4 major background electrolytes (NaCl, KCl, NaOH, KOH) can be used (Oelk-
ers and Helgeson, 1990; Pokrovski and Helgeson, 1995; 1997a; 1997b). The ion-size parame-
ters for these models are 3.72 (NaCl), 4.08 (KCl), 3.31 (NaOH), and 3.67 (KOH), and were 
derived from the effective electrostatic radii of the ions (Helgeson et al., 1981). The Kiel-
land’s (1936) table of individual effective ionic radii a j can be found in textbooks (e.g. 
Nordstrom and Munoz, 1994; Langmuir, 1997) with recommended defaults for missing ionic 
species. 

Usage of individual Kielland’s parameters may be more appropriate at relatively low ionic 
strength. On the other hand, application of eqn (4.1-9) with the common ion-size parameter a  
seems to be more warranted at higher ionic strength and/or elevated temperatures.  

Another built-in function in the GEMS code implements the popular Davies equation:  
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This semi-empirical equation can be used at low temperatures and ionic strength between 0.1 
and 0.7 molal; it is thought to be inaccurate at I < 0.1 m because it neglects the difference in 
ion approach parameters. The advantage of the Davies equation is that it uses only the charge 
as an individual species property. Conversely, all ions of the same charge will have identical 
activity coefficients (this is also true for eqn 4.1-10 with common a  parameter). Note that the 
last (mole fraction to molality correction) term in eqn (4.1-10) is optional in GEMS-PSI code.  

 
4.1.2. Neutral aqueous species (ion pairs, dissolved gases)  
To account for the “salting-out” effect, neutral aqueous species (dissolved gases and neutral 
complexes) require an activity coefficient assumed to be a linear function of ionic strength:  

 
w
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Ib 1010 loglog +=γ        (4.1-12).  

In the case of dissolved gases, the empirical bg coefficient can be obtained from experimental 
values of the Setchenow coefficient, measured in electrolyte solutions with the assumption 
that the activity coefficient of a gas dissolved in pure water equals unity. Typical values of bg 
lie between 0.02 and 0.2 (Langmuir, 1997), with an average 0.074 (Borisov and Shvarov, 
1992). In GEM-Selektor, the bg values can be automatically collected from DComp or 
ReacDC records for neutral aqueous species, wherever provided. 

Eqn (4.1-12) can also be obtained from eqn (4.1-10) at zero charge (zj =0), suggesting that the 
common third parameter bγ  can be used as a generic salting-out coefficient of neutral aqueous 
complexes, for which the experimental Setchenow coefficient is not known. This option (or 
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its alternative to leave γj = 1 for neutral complexes) can be set in DComp or ReacDC records 
in the GEMS chemical thermodynamic database, according to the user’s preference. 

 
4.1.3. Water solvent  
By default, the activity coefficient of water solvent is assumed to be unity and the activity of 
water is directly calculated from its mole fraction. This is usually a good approximation, as 
long as total solute concentrations remain moderate. Optionally, when the extended Debye-
Hückel activity model for aqueous species after Helgeson et al. (1981) is used, the activity of 
water can be calculated from the osmotic coefficient: 

 
50843555
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−=        (4.1-13).  

where Σm is the sum of all species molalities and φ is the osmotic coefficient, which is calcu-
lated as (Helgeson et al., 1981):  
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and: 
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 IBa γ+=Λ 1         (4.1-16) 

Here +Z and −Z are the charges of the completely dissociated electrolyte, ψ is 1 for any 1:1 
electrolyte, ν is the stoichiometric number of moles in 1 mole of the electrolyte, Cm and 

Σm are the sums of molalities of charged and all species, respectively. 

Note that the quotient ΣmmC is only considered in the seminal paper by Helgeson et al. 
(1981) but not in later work (Pokrovskii and Helgeson, 1995; 1997a; 1997b). Ignoring this 
term results in incorrect calculations for dilute electrolyte solutions with a considerable degree 
of association, which may cause a failure of the initial approximations in GEM-based equilib-
rium solvers. Note that although the activity coefficient of water calculated with eqns (4.1-13) 
to (4.1-16) is usually relatively close to unity, setting it by default to 1.0 is thermodynamically 
inconsistent because it violates the Gibbs-Duhem relationship. 
  
4.1.4. Specific ion interation theory (SIT) model  
The Brønsted-Guggenheim-Scatchard model, also called the SIT (Specific Ion Interaction 
Theory) model, was also built into the GEM-Selektor code because this model has been ex-
tensively used in NEA TDB evaluations (Grenthe and Puigdomenech, 1997) and in compila-
tion of the Nagra-PSI 01/01 chemical thermodynamic database (Hummel et al., 2002). The 
SIT model is based on two assumptions. 

(1) The asymmetric molal activity coefficient of an ion of charge zi in solution is given by  
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where Aγ  is the limiting Debye-Hückel law slope, and ε(i,k) is an interaction coefficient 
which describes the specific short-range interaction between the ionic species i and k. The 
summation extends over all species k with molality mk present in solution. Value of 1.5 
kg1/2·mol-1/2 in the denominator corresponds to the product aj·Bγ  in the Debye-Hückel term 
(where aj is an "effective" ion diameter and Bγ is given by eqn 4.1-7). This value of 1.5 was 
empirically selected to minimize the ionic strength dependency of a number of electrolytes at 
T = 298.15 K.  

The present notation assumes that interaction coefficients ε(i,k) do not depend on concentra-
tion and temperature and are symmetric, i.e. ε(i,k) ≡ ε(k,i). If concentration dependency of in-
teraction coefficients needs to be stated explicitly, the NEA series of "Chemical Thermody-
namics" (Grenthe and Puigdomenech, 1997) suggests an expression of the form 

ε(i,k,I) = ε1(i,k) + ε2(i,k)·log10I      (4.1-18). 

(2) Interaction coefficients ε(i,k) for ions of the same sign are zero.  
Often, the interaction coefficient for uncharged species (zi = 0) is assumed to be zero, because 
the DH-term is zero by definition. However, this simplification is not always sensible, and it 
may well be that the activity coefficient of uncharged species γneutral  

∑ε=γ
k

kneutral m)k,neutral(10log       (4.1-19) 

significantly differs from unity. 

 

4.1.5. Pitzer ion-interaction Model (contributed by F.F. Hingerl) 
 
Virial expansion approach. The Pitzer model consists of a set of equations formulated by 
Kenneth Pitzer and his associates in the 1970s. The model is tailored for determining excess 
Gibbs energy of aqueous electrolyte mainly from theoretical considerations. The long-range 
interactions are accounted for by a Debye-Hückel part, the short-range interactions - by a viri-
al expansion. A general form of the Pitzer equation is (Anderson, 2005):   

= + +∑∑ ∑∑∑
j ji i kL LL L LEX

ij i j ijk i j k
i j i j kW

G f ( I ) m m m m m
kg RT

λ µ     (4.1-20) 

where kgW is the number of kilograms of water and m indicate molalities. The indices i,j,k 
represent any kind of aqueous species. In Eq.(4.1-20), a version of the Debye-Hückel equation 
stands for f(I), the first virial coefficient. The next term accounts for interactions between two 
species, and the last one for interaction between three species. The binary interaction coeffi-
cient λij is a function of ionic strength I; the ternary interaction coefficient μijk is considered 
being independent of ionic strength. It becomes zero if all indices point to ions having charge 
of the same sign. Inserting parameters and a Debye-Hückel term into the general Pitzer equa-
tion for the case of a binary electrolyte leads to the following form of excess Gibbs energy: 

( ) 2 34 1 2   = − + + +    

EX

M X MX M X MX
W

G IA ln b I m B m C
kg RT b

Φ ν ν ν ν    (4.1-21) 

where νM and νX are stochiometry coefficients of the cation and anion in the electrolyte. We 
note the theoretical expression of the Debye-Hückel parameter (in SI units) 
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with dw as the density of water (in g per cm3), e as the electronic charge, N0 as the Avogadro 
number, ε and εo as the relative permittivity of water or vacuum respectively; T stands for the 
temperature, and k for the Boltzmann constant.  
 
Virial coefficients. The secondary Pitzer virial coefficient MXC  is related to MXCΦ  by  

2
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z z
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         (4.1-23) 

 
where zM and zX are charges of cations or anions respectively. Further virial coefficients are: 
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MXBΦ is needed for calculation of the osmotic coefficient and the activity of water, MXB  for 
calculation of activity coefficients of cations and anions, and '

MXB for the Debye-Hückel term. 
The functions g(x) and g’(x) are 
 

22 1 1 −= − + xg( x ) ( ( x )e ) / x         (4.1-27) 
2

22 1 1
2

−= − − + + xxg'( x ) ( ( x )e ) / x        (4.1-28) 

where x substitutes for MX Iα  in (4.1-27) and  for '
MX Iα  in (4.1-28). For any salt contain-

ing a monovalent ion, MXα = 2 and '
MXα  = 12; for 2-2 electrolytes, MXα = 1.4 and '

MXα  = 12; 
for 3-2, 4-2 and electrolytes containing higher valence cations, MXα = 2.0 and '

MXα = 50.  
 
The definition of effective (molal) ionic strength ( I ) is as usual (Pitzer, 1991): 
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where zj is the charge of species j; mj its molality, and L is the number of aqueous species.   
 
Activity and osmotic coefficients. From fundamental thermodynamics, Gex and γj (and the os-
motic coefficient φ) are related by 
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From the Pitzer Gex expression, the activity coefficients of ions and the osmotic coefficient for 
the solvent can be obtained. In GEM-Selektor, the corresponding derivation of the Pitzer for-
malism according to Harvie et al (1984) is implemented.  The activity of water in the solution 
is calculated as: 

2
11000 =

= − + ∑
L

W
H O j

j

Mln( a ) ( m )φ        (4.1-32) 

Mw stands for the molecular mass of water, mj for the molality of species j and φ for the os-
motic coefficient. The latter is obtained from following expression: 
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Subscripts n, c and a indicate neutral species, cations or anions, respectively. The activity co-
efficients of a cation (γM) with index M and zM ≥ 1, anions (γX) with index X and zA ≤ -1, and 
neutral species (γN) with index N and zN=0, are computed as: 
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The F-factor used in computation of γM and γX is defined as follows: 
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The Z term comes from: 

1=

= ∑
L

j j
j

Z z m           (4.1-38) 

It is used in the terms for calculation of activity coefficients and of the osmotic coefficient.  
 
The ionic strength-dependent parameters ' '

cc aa cc aa cc aa, , , , ,Φ ΦΦ Φ Φ Φ Φ Φ account for interactions 
between like-sign ion pairs.  
 

= + +E E '
ij ij ij ij( I ) I ( I )ΦΦ θ θ θ         (4.1-39) 
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The parameters E '
ij (I)θ  and E

ij (I)θ  are computed according to Pitzer (1991) by Harvie’s 
method (application of Chebyshev polynomial approximations to solve the used integrals in-
stead of numerical integration). E

ij (I)θ  and E '
ij (I)θ  terms account for the electrostatic unsym-

metrical mixing effects. ccaΨ  and caaΨ  ternary ion-interaction coefficients and ncaζ  account 
for ternary interactions between charged species of different sign with neutral species.  

 
4.1.6. Extended UNIQUAC (EUNIQUAC) model (contributed by F.F. Hingerl) 
The Extended UNIQUAC (UNIversal QUAasi-Chemical) model (Nicolaisen et al., 1993; 
Thomsen et al., 1996; Thomsen and Rasmussen, 1999) combines a Debye-Hückel term for 
long-range electrostatic interactions with a standard UNIQUAC local composition term 
(Abrams and Prausnitz, 1975) for short-range interactions. 

Conventions, concentration and standard states. The implemented version of the EUNI-
QUAC model is internally formulated based on the mole fraction concentration scale. The 
standard state chemical potential of water solvent 0

Wµ  and the associated activity coefficient 

Wγ , follow the symmetric (Raoultian) convention (xW is the mole fraction of water): 

( )0= +W W W WRT ln xµ µ γ         (4.1-42) 
The corresponding formulation of the chemical potential of the solute is expressed in mole 
fraction scale taken in the asymmetric (Henryan) convention. 

( )= +* *
j j j jRT ln xµ µ γ         (4.1-43) 

The asymmetric mole fraction activity coefficient is
 

∞=*
j j j/γ γ γ           (4.1-44) 

where *
jγ  is the activity coefficient taken in the asymmetric convention; jγ  the activity coef-

ficient in the symmetric convention; and ∞
jγ  is the infinite dilution activity coefficient in the 

symmetric convention. Conversion of aqueous species activity coefficients to the molality 
scale for compatibility with the standard state convention used for aqueous species in the 
GEM-Selektor code is performed through the the following correction term: 

=m *
j j Wxγ γ           (4.1-45) 

The EUNIQUAC equations. The asymmetric term for the excess Gibbs energy (per mole of 
solution and normalized over RT) is expressed as follows: 

−= + +E* E* E* E*
D H C Rg / RT g / RT g / RT g / RT      (4.1-46) 

In this formulation, −
E*
D Hg  is the long-range-interaction contribution which is represented by a 

Debye-Huckel term. The short-range interactions are separated into a combinatorial (entropic) 
term E*

Cg  and a residual (enthalpic) term E*
Rg . The former is independent of temperature (and 

pressure) and varies only with changes in relative size of the involved species. The latter rep-
resents the temperature dependence of the short-range-interactions and is proportional to ex-
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cess enthalpy. Currently, the pressure dependence of short-range interactions is not explicitly 
included in the functional form of the EUNIQUAC equations. 

The rational scale, symmetrical-convention activity coefficient is derived from the molar ex-
cess Gibbs energy using standard thermodynamic relationships: 

( )
≠

 ∂
 =

∂  
j i

E

j
j

P ,T ,n

ng / RT
ln

n
γ

            (4.1-47) 
Long-range contributions. The Debye Huckel (D-H) term is calculated as: 

1 1
2 32 24 1 0 5−

  
= − + − +  

   

E ,D H
W WG / ( RT ) x M A ln bI bI . b I / b

   (4.1-48) 
where MW is the molar mass of water (0.018015 kg/mol), b is a parameter with the value 1.5 
(kg/mol)1/2, and I is the true ionic strength: 

( )2 20 5 0 5= =∑ ∑j j j j W W
j j

I . m z . x z / x M
      (4.1-49) 

Here mj stands for the molality of species j, zj is the charge of species j, and xj is the mole frac-
tion of species j. A is the Debye-Huckel parameter, which can be approximated (for water as 
solvent) by the empirical relationship: 

( ) ( )23 5
0 01 131 1 335 10 1 164 10− − = + ⋅ ⋅ − + ⋅ ⋅ − A . . T T . T T

    (4.1-50) 
Note that this simple polynomial approximation is only valid for the temperature range 
273.15-383.15 K. T0 is the reference temperature of 273.15 K. A more general expression for 
the Debye-Huckel parameter A that explicity accounts for temperature and pressure depend-
ence is:

 

( )

1
2

3
2

=
dA c

DT           (4.1-51) 
The parameter c has a value of 1.3287*105 K3/2m3/2mol-1/2, d is the density of water in kg/m3 
and D is the dielectric constant of water. 

Derivation of the D-H contribution to the excess Gibbs energy with respect to nj (j stands for 
any solute and water) results in equations for the D-H contribution to the activity coefficient 
of species j ( −D H

jγ ) or water ( −D H
Wγ ), respectively. The D-H term for aqueous species follows 

the asymmetric convention and the term for water follows the symmetric convention: 
1 1

2 2 21−  
= − + 

 
* D H
j jln z AI / bIγ

       (4.1-52)

 
 

11 1 1
32 2 22 1 1 2 1

−

−
    
 = + − + − +   
     

D H
W Wln M A bI bI ln bI / bγ

    (4.1-53) 
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Short-range contributions - combinatorial (entropic) term. The combinatorial contribution to 
the excess Gibbs energy is described as: 

( ) ( )5 0= −∑ ∑E ,C
j j j j j j j

j j
G / ( RT ) x ln / x . q x ln /φ φ θ

    (4.1-54) 

where jφ  is the volume fraction calculated from the volume parameters rj: 

= ∑j j j i i
i

x r / x rφ
         (4.1-55) 

and jθ  are the surface area fractions calculated from the surface area parameters qj. 

= ∑j j j i i
i

x q / x qθ
         (4.1-56) 

Derivation of the combinatorial part of the excess Gibbs energy function (4.1-54) results in 
the corresponding contributions to activity coefficients: 

( ) ( )1 5 0 1 = + − − + − 
C
j j j j j j j j j jln ln / x / x . q ln / /γ φ φ φ θ φ θ    (4.1-57)

 

Because this former expression gives a symmetric activity coefficient term, the infinite dilu-
tion term is used to obtain the respective asymmetric terms. This is done by setting xW = 1 in 
equation (4.1-57), which results in: 

( ) ( ) ( )1 5 0 1∞  = + − − + − 
C ,
j j w j w j j w w j j w w jln ln r / r r / r . q ln r q / r q r q / r qγ   (4.1-58)

 

Short-range contributions - residual (enthalpic) term. The temperature-dependent term of the 
residual term of the excess Gibbs energy function is given as: 

 
= −  

 
∑ ∑E ,R

j j i ij
j i

G / ( RT ) x q ln θψ
       (4.1-59)  

with: 

( ) = − − ij ij jjexp u u / Tψ
        (4.1-60) 

( )0 298 15= + −t
ij ij iju u u T .         (4.1-61)

  

The parameters 0
iju and t

iju characterize the energetic interaction between species i an j. They 
are considered symmetrical (uji = uij). Equation (4.1-61) gives their temperature dependence.

 The derivation of equation (4.1-59) with respect to species j results in the corresponding ex-
pression for the residual part of the symmetrical-convention activity coefficient: 

1
    

= − −    
    
∑ ∑ ∑R

j j l lj i ji l li
l i l

ln q ln /γ θψ θψ θψ
     (4.1-62) 

The associated infinite dilution correction term is given by: 

1∞ = − −R,
j j wj jwln q [ ln ]γ ψ ψ

        (4.1-63) 
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The asymmetric-convention activity coefficient of the solute species. In order to get activity 
coefficients consistent with the asymmetric convention, the symmetric activity coefficients 
have to be divided by the corresponding infinite dilution terms (see equation 4.1-44). Since 
the Debye-Huckel part is already considered asymmetric, this conversion is only applied to 
the combinatorial and redidual terms of the short-range contributions. According to equation 
(4.1-46), the final asymmetric activity coefficient is then obtained by summation of the cor-
rected parts:

 
( ) ( )∞ ∞ −= + +* C C , R R, * D H

j j j j j jln ln / ln / lnγ γ γ γ γ γ      (4.1-64) 
The symmetric-convention activity coefficient of the solvent. The activity coefficient of water 
is always calculated consistent with the symmetric convention:   

−= + +C R D H
W W W Wln ln ln lnγ γ γ γ        (4.1-65) 

The osmotic coefficient. From the activity coefficient of water, the corresponding practical 
osmotic coefficient (in the Lewis-Randall scale) can be calculated: 

( )−
≡ = −w w

w w
w s s

ln a n ln x
M vm vn

Φ γ        (4.1-66) 

In this definition,  a complete dissociation of the electrolyte is assumed, which is reflected by 
the stoichiometric coefficient v (actually, the sum over the stoichiometric units forming due to 
dissociation) given a fixed value independent of the actual degree of dissociation of the salt. 
According to Thomsen (1997), osmotic coefficients for bisulfate salts, as well as bicarbonate 
salts, can be found in the literature either as osmotic coefficients for 2-1 or 1-1 electrolytes.  

 
4.2. Solid solutions, melts and liquid mixtures 
Possible options for calculation of activity coefficients for end members of condensed phases 
in GEM-Selektor v3.2 code, implemented in the TSolMod, are summarized in Appendix 4-3.  

Treatment of solid (and any condensed non-electrolyte) solutions in GEM-Selektor code is 
based on the following expression for the chemical potential of a j-th end member (Karpov et 
al., 1997; 2001):  

jj
PTj

j RT
g

γχυ lnln,, ++=        (4.2-1),  

where gj,T,P is the molar apparent Gibbs energy function at T,P of interest; 
α

χ X
x j

j = is the 

mole fraction (xj is the mole quantity of j-th species and Xα = ∑ xj  , j ∈ Lα  is the total mole 
quantity in the in the α-th phase), and γj  is an activity coefficient.  

If all γj  = 1 then eqn (4.2-1) reduces to the Raoult’s law of ideal mixing, where the activity of 
j-th end-member equals its mole fraction. This definition of ideal mixing is rather narrow be-
cause, in a broader sense, ideal solutions can be defined as having zero enthalpy and volume 
of dissolution (Oates, 1966; Anderson and Crerar, 1993). Further complications include regu-
lar solutions (with non-zero enthalpy of dissolution) and non-ideal solutions where enthalpy, 
volume and entropy of dissolution are non-zero for an end-member. In general, one can write 
for the dissolution properties:  
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;ln

;,1,

∑−=∆

∈≠=

j
jjd

jjjj

aRS

LjXa

χ

γγ α

 

 ∑+=

≠≠

j
jjdd

dd

aRTHG
HV

ln
;0;0
χ∆∆

∆∆
       

Here, aj stands for the activity of j-th end-member and the subscript d refers to the difference 
of a particular property between a non-ideal solution and a mechanical mixture of its pure 
end-members (Anderson and Crerar, 1993). In practice, the excess thermodynamic functions 
of mixed non-electrolyte phases are usually considered:  

∑−=
j

o
jjrealEX VVV χ          (4.2-2),  

∑−=
j

o
jjrealEX HHH χ         (4.2-3),  









−−= ∑∑

j
jj

j

o
jjrealEX RSSS χχχ ln       (4.2-4), 

 







+−= ∑∑

j
jj

j

o
jjrealEX RTGGG χχχ ln       (4.2-5), 

where the subscript real refers to an experimentally measurable property in the real system. 
Likewise, for one end-member, an excess partial property can be defined as a difference be-
tween the real and the ideal partial molar property. For instance, the excess partial Gibbs en-
ergy of j-th end-member (counted relative to Raoultian ideal mixing) is  

jj
o
jjj

o
jidealjrealj

EX
j RTRTRTG γχµγχµµµ lnlnln,, =−−+=−=   (4.2-6).  

The excess partial molar entropy, enthalpy, and volume can then be found by differentiating 
the EX

jG over temperature and pressure (see details in e.g. Anderson and Crerar, 1993):  

 
χ

γ
γ

,

ln
ln

P

j
j

EX
j T

RTRS 







∂

∂
−−=       (4.2-7); 

 
χ

γ

,

2 ln

P

jEX
j T

RTH 







∂

∂
−=        (4.2-8); 

 
χ

γ

,

ln

T

jEX
j P

RTV 







∂

∂
−=        (4.2-9).  

Thus, to describe real non-electrolyte solutions, it is sufficient to know (partial) molar proper-
ties of all end-members at T,P of interest plus functional dependencies of their activity coeffi-
cients on T,P and composition (i.e. on mole fractions χj of all end-members).  

There is no general solution to this problem, though a great variety of semi-empirical models 
have been developed and parameterized for binary-, ternary-, … symmetric and asymmetric 
systems. Some of the most frequently used mixing models are described below and imple-
mented as built-in functions in the GEM-Selektor code (see text below and Appendix 4-2). In 
addition to those built-in mixing models, any arbitrary mixing model can be written by the 
user in a Phase definition script to calculate activity coefficients of end-members, which will 
be stored in the database and automatically executed on GEM iterations. 
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 4.2.1. Regular and subregular (Margules) models 
The Margules binary mixing model is most frequently used (e.g., Anderson and Crerar, 1993). 
It is based on the “subregular” expression for the excess Gibbs energy of mixture:  

( ) ( )21122121 χχχχχχ WWGEX +=         (4.2-10),  

where χ1 and χ2  are mole fractions of the first and second end member (χ1 + χ2 = 1) and W1, 
W2 are Margules parameters (in J mol-1), in general, functions of T and P but not of χ: 

 jVjSjUj PWTWWW ,,, +−=        (4.2-11),  

where WU, WS, and WV are empirical parameters related to excess internal energy, entropy and 
volume of the mixture; they can be evaluated from experimental data. Next, the following ex-
pressions for partial excess Gibbs energies and activity coefficients can be obtained:  

 ( ) ( ) 3
221

2
21211 22ln χχγ WWWWGRT EX −+−==      (4.2-12), 

 ( ) ( ) 3
112

2
12122 22ln χχγ WWWWGRT EX −+−==      (4.2-13). 

Eqns (4.2-12) and (4.2-13) comprise the so-called “subregular” or “asymmetric” Margules 
mixing model. Asymptotically (e.g. at χ1 → 1 and χ2 → 0), the activity coefficient of the “ma-
jor” end-member ln γ1 → 0 and that of the “trace” end-member ln γ2 → W2/(RT). Likewise, at 
χ1 → 0 and χ2 → 1, ln γ1 → W1/(RT) and ln γ2 → 0. This asymptotic behavior simplifies mod-
eling calculations when co-precipitation of trace components into host mineral is considered.   

Eqns (4.2-12) and (4.2-13) are often used with dimensionless interaction parameters:  

 ( ) ( ) 3
221

2
2121 22ln χχγ aaaa −+−=        (4.2-14), 

 ( ) ( ) 3
112

2
1212 22ln χχγ aaaa −+−=        (4.2-15),  

where RT
WaRT

Wa 2
2

1
1 ; == . If a1 = a2 = a  then eqns (4.2-14) and (4.2-15) reduce to the 

“regular” or “symmetric” Margules mixing model, typically used for carbonate or sulfate sol-
id solutions (Lippmann, 1980; Glynn, 2000):  

 2
21ln χγ a=           (4.2-16), 

 2
12ln χγ a=           (4.2-17). 

In general, the binary interaction parameter W = RT⋅a  is also a function of T,P but not χ:  

 SHVSU TWWPWTWWW −=+−=       (4.2-18). 

At a > 2, the symmetric binary mixture should exsolve into two co-existing phases of differ-
ent composition along the binodal solvus curve (Glynn, 2000).  The width of the miscibility 
gap depends on temperature (Lippmann, 1980),  

 T
Ta c

T
2≈          (4.2-19), 

where Tc is the critical temperature (or the highest temperature of melting) for the ionic solid. 
At ambient temperatures, the values of a range from nearly zero to maximum 13-14 in various 
ionic binary mixtures, i.e. from complete miscibility to χ1 ≤ n⋅10-6 (Glynn, 2000). If experi-
mental compositions of two phases co-existing within the miscibility gap are known then the 
value of interaction parameter a can be retrieved. In case of the binary symmetric gap, the fol-
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lowing relation can be derived from equating chemical potentials of end-member A at both 
phase compositions ( 5.0<Aχ is mole fraction of A in one of the phases):  

 ( )
12

1lnln
−

−−
=

A

AAa
χ

χχ          (4.2-20). 

If a miscibility gap is expected to occur in the solid solution system then more than one mixed 
phase definition must be inserted into the GEMS chemical system definition (CSD), and a 
special mode of automatic initial approximation has to be specified (Appendix 4-4) to ensure 
that the two-phase region is reproduced at appropriate bulk compositions. 

The Margules model can be relatively easily expanded to ternary, quaternary, … mixture sys-
tems. However, the number of interaction parameters increases dramatically, making a much 
higher demand to experimental data needed for parameterization, and expressions for excess 
properties become very cumbersome. For instance, the ternary Margules model can be ob-
tained from summation of GEX for three binary models with common end-members: 

( ) ( ) ( )
321123

1
2
2212

2
1121

2
3313

2
1132

2
3323

2
223

χχχ

χχχχχχχχχχχχ

W
WWWWWWGEX

+

++++++=
  (4.2-21). 

The ternary interaction parameter W123 is often neglected (e.g., Anderson and Crerar, 1993).  
Full theoretical expressions for sub-regular activity coefficients can be found in the literature 
(Helffrich and Wood, 1989). Assuming the regular mixing (Wij = Wji), one obtains for activity 
coefficients:  

( ) ( )
( )132123

3223131312121

21
11ln

χχχ
χχχχχχγ

−
+−−+−=

W
WWWRT

    (4.2-22), 

( ) ( )
( )231123

3113211223232

21
11ln

χχχ
χχχχχχγ

−
+−−+−=

W
WWWRT

    (4.2-23), 

( ) ( )
( )321123

2112322331133

21
11ln

χχχ
χχχχχχγ

−
+−−+−=

W
WWWRT

    (4.2-24). 

Thus, compared to the binary regular model (eqns 4.2-10 to 4.2-13), four Margules parame-
ters are needed instead of one (or, including T,P dependence of mixing, 12 parameters are 
necessary instead of 3). In the quarternary case, six binary plus four ternary plus one quarter-
nary Margules parameters (in total 11) would be necessary just for a regular approximation. 
This is why, in practice, full mixing models of the order above ternary are very seldom. Built-
in Margules mixing models available in GEM-Selektor are limited to binary subregular and 
multicomponent regular cases.  

Various simplifications can be used to reduce the number of interaction parameters, for in-
stance, it can be shown that some binaries in a multi-component mixture are ideal. One can 
also assume (Kulik et al., 2000) that in reality, two of six end-members together comprise 
more than 96% of the mixture (major end-members), and the remaining four are minor end-
members, each less than 1% mole fraction (χj < 0.01). Then activity coefficients of major end-
members (1 and 2) can be considered as independent of mole fractions of minor end-members 
(indexed 3,4,…):  

( )2
101 1ln χγ −≈ WRT          (4.2-25), 

 2
102ln χγ WRT ≈          (4.2-26). 
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For minor end-members, all minor-minor, ternary, quaternary, … parameters can be neglected 
in the two major end-members (1 and 2) case:  

 2102321313ln χχχχγ WWWRT −+≈       (4.2-27) 

 2102421414ln χχχχγ WWWRT −+≈       (4.2-28) 

and so on. Thus, in a regular mixture with two major and several minor end-members, one 
major binary parameter W0 is needed, as well as two binary Margules parameters per minor 
end-member (for both minor-major binaries). This simplified model appears to be practically 
useful for trace metal co-precipitation in host carbonates and sulfates. 

 
4.2.2. Multi-component regular model (symmetric formalism) 
Many naturally occurring rock-forming minerals are complex solid-solutions composed of 
many end-members. Examples include amphiboles, chlorite, muscovite, biotite, pyroxenes 
and many others. For such cases the regular model can be consistently extended to multi-
component systems. Powell and Holland (1993) have derived general expressions for the ex-
cess properties and activity coefficients for multi-component regular solid-solutions, which 
have been termed the symmetric formalism. It needs to be taken into account that the availa-
ble experimental data for such complex mineral phases usually do not justify to fit them with 
more than one interaction parameter per binary system. Therefore, using a regular (symmet-
ric) mixing model with only binary interaction parameters is probably as far as we can get 
with many multi-component phases. The excess Gibbs free energy for the multi-component 
case is expressed as: 

 ji

1-n

1i

n

ij
jiEX   WG ∑∑

= >

= χχ         (4.2-29) 

where the summation takes place over all species 1 to n. The activity coefficient for each end-
member k is then calculated as: 

 ji

1-n

1i

n

ij
jik   ln WqqTR ∑∑

= >

−=γ        (4.2-30) 

in which ii 1 χ−=q when i = k and ii χ−=q when ki ≠ . The jiW are binary regular interaction 
parameters. The binary interaction parameters Wij can be simple functions of temperature and 
pressure: cPbTaW ++=ji  (no excess heat capacity term is considered). The other excess 
properties (entropy, enthalpy, volume) can be obtained as partial derivatives of the excess 
Gibbs free energy expression, eq. (4.2-29). 
 
4.2.3. Multi-component Van Laar model (asymmetric formalism) 
Although a regular model is suitable as a first-order representation of the mixing properties of 
many solid-solutions, there is a considerable number of systems that can not be well described 
in this way. Most importantly, it is known from phase equilibria studies that certain systems 
display an asymmetric solvus, i.e. the solubility of end-member A in B is considerably higher 
than the solubility of B in A. Such effects are very pronounced at low temperatures, because 
the energetic effects of ideal mixing become weaker with decreasing temperature. Prominent 
examples for systems that are asymmetric are the alkali feldspars (albite-microcline), halite-
sylvite, white mica (muscovite-paragonite) and calcite-dolomite.  

In order to describe the mixing properties of asymmetric systems, a diverse range of thermo-
dynamic formulations of variable complexity have been developed. Recently, Holland and 
Powell (2003) have derived a modification of the regular (symmetric) formalism that is suita-
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ble for multi-component asymmetric systems. This asymmetric formalism is based on a mod-
el that was originally developed by Van Laar (see reference in Holland and Powell, 2003) for 
gas mixtures. Holland and Powell (2003) have modified the model to be suitable for solid-
solutions. The asymmetric formalism retains one binary interaction parameter per pair of end-
members, but it adds one scaling parameter (size parameter) per end-member. The excess 
Gibbs free energy is then expressed as: 

 ji

1-n

1i

n

ij
jiEX   BG ∑∑

= >

= φφ         (4.2-31) 

where  

 ji
ji

n

1j jj
ji

2
WB

αα

αχ

+
=

∑ =         (4.2-32) 

Here, iα and jα are the size parameters (one per end-member). The φi terms are size-parameter 
adjusted mole fractions: 

 
∑ =

= n

1j jj

ii
i

αχ
αχφ         (4.2-33) 

The activity coefficients are now calculated in a way quite similar to the regular (symmetric) 
formalism: 

 *
ji

1-n

1i

n

ij
jik   ln WqqTR ∑∑

= >

−=γ        (4.2-34) 

where ii 1 φ−=q when i = k and ii φ−=q when ki ≠ . The *
jiW are size parameter adjusted in-

teraction parameters, defined as: 

 
ji

k
ji

*
ji

2
αα

α
+

= WW         (4.2-35) 

Note that kα is the size parameter for the end-member for which the activity coefficient is cal-
culated, whereas iα and jα in the denominator are the size parameters for the respective inter-
action, which can include species k, but can also be other species than k. As for the symmetric 
formalism, the Wij can be functions of temperature and pressure: cPbTaW ++=ji . 
 
4.2.4. Redlich-Kister (Guggenheim) model  
The Redlich-Kister mixing model is a frequently used alternative to the Margules-type mod-
els, especially for binary mixtures. It is based on Guggenheim’s expansion series for the ex-
cess Gibbs energy of mixing (Glynn, 2000):  

( ) ( ) .....][ 2
212211021 +−+−+= χχχχχχ aaaRTGEX     (4.2-36),  

where a0, a1, a2 … are dimensionless fitting parameters (an equivalent form of eqn 4.2-36 us-
es  Lj = RT⋅aj  parameters in J⋅ mol-1). From the above equation, the following activity coeffi-
cients can be obtained in the binary case:  

( ) ( )( ) ...]53[ln 212122110
2
21 +−−+−+= χχχχχχχγ aaa    (4.2-37); 

( ) ( )( ) ...]53[ln 121221210
2
12 −−−+−−= χχχχχχχγ aaa    (4.2-38). 

The first two terms in eqns (4.2-36) to (4.2-38) are generally sufficient to represent experi-
mental data. In this case, the last two equations calculate the same curves as the subregular 
Margules model (eqns 4.2-12 and 4.2-13), with the following relations between parameters:  
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 ( ) ( )10211012 ; aaRTWaaRTW +=−=      (4.2-39).  

Further reduction to the regular mixing model by setting a1=0 and a2 = 0 yields  

 0aRTaRTW ⋅=⋅=         (4.2-40).  

In GEM-Selektor, equations (4.2-37) and (4.2-38) with three parameters are implemented as a 
built-in function for the binary Redlich-Kister mixing model. Reduction to subregular and 
regular mixing models can be done easily by setting unnecessary coefficients to zero.  

Several analytical and geometric schemes for the extension of the Redlich-Kister formalism 
(and other binary solid-solution models) to higher-order (multicomponent) systems have been 
proposed, including methods by Kohler, Toop and Muggianu. It has been shown that the 
Muggianu geometric scheme is formally equal to the more simple analytical expression 
(Hillert, 1998). Based on this formalism, a 4-term (0L-3L) Redlich-Kister multicomponent 
model has been implemented in TSolMod. Respective excess Gibbs energy is expressed as: 

 ji

1-n

1i

n

ij
ji  LGEX ∑∑

= >

= χχ         (4.2-41) 

where 

( ) ( ) ( )3
jiji

32
jiji

2
jiji

1
ji

0
ij χχχχχχ −+−+−+= LLLLL     (4.2-42) 

The full expression for the activity coefficient can be found in (Hillert, 1998). It has to be not-
ed that this equation depends on the order between species (end-members) i and j. Therefore, 
in setting up models using the multicomponent Redlich-Kister formalism, the sign of each 
interaction term with odd number, i.e., the terms ij

1L and ij
3L in equation (4.2-42), changes to 

negative if the  order between i and j is reversed. The binary interaction parameters ijL can be 

a function of temperature and pressure: ( ) PdTcTbTaL +++= lnij
k . The logarithmic term 

in this expression accounts for excess heat capacity. 

 

4.2.5. NRTL (non-random two-liquid) model 
The NRTL model (Renon and Prausnitz, 1968), along with the Wilson and UNIQUAC (uni-
versal quasichemical) equations, belongs to a class of models for the excess Gibbs free energy 
that are based on the concept of local composition. These models are traditionally used to 
model liquid-liquid equilibria, but are increasingly applied to electrolyte solutions. The basic 
assumption of local composition models is the existence of distinct subcells in liquid mixtures 
where each molecule type is surrounded by a compositionally different environment. A major 
advantage of the local composition models is that the properties of multicomponent mixtures 
can be successfully modeled from well-calibrated binary systems, without requiring additional 
ternary and higher-order interaction terms. For binary systems the excess Gibbs energy is giv-
en by (Prausnitz et al., 1997): 









+

+
+

=
1212

1212

2121

2121
21 G

G
G

G
RT
g EX

χχ
τ

χχ
τχχ      (4.2-43),  

where  

RT
gg

RT
g 221212

12
−

=
∆

=τ         (4.2-44),  
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RT
gg

RT
g 112121

21
−

=
∆

=τ         (4.2-45),  

are the normalized differences in the interaction energies between molecule pairs 1-1, 2-2, and 
1-2 (Prausnitz et al., 1997). The G terms in equation (4.2-43) are then given by: 

( )121212 exp τα−=G         (4.2-46),  

( )211221 exp τα−=G         (4.2-47),  

The expressions for the activity coefficients are then obtained as: 

( )
( ) 












+
+








+

= 2
1212

1212

2

2121

21
21

2
21ln

G
G

G
G

χχ
τ

χχ
τχγ     (4.2-48),  

( )
( ) 












+
+








+

= 2
2121

2121

2

1212

12
12

2
12ln

G
G

G
G

χχ
τ

χχ
τχγ     (4.2-49),  

The model is readily expanded to multicomponent systems, with the excess Gibbs energy giv-
en as (Prausnitz et al., 1997): 

∑
∑

∑
=

=

==
N

i
N

k
kki

N

j
jjiji

i

EX

G

G

RT
g

1

1

1

χ

χτ
χ        (4.2-50),  

Activity coefficients are then computed as (Prausnitz et al., 1997): 
















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−+=

∑

∑
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=

=

=
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ljljl
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N
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ijj
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G

G

G

G

G
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1

1

1

11

1ln
χ

τχ
τ

χ

χ

χ

χτ
γ     (4.2-51),  

The other excess properties (enthalpy, entropy, heat capacity) are obtained from partial deriv-
atives of the excess Gibbs energy function and standard thermodynamic relations, which 
yields for enthalpy: 

( )
T

RTgRTh
EX

EX

∂
∂

−= 2        (4.2-52),  

The model as originally formulated assumes that the energy terms are constant, whereas em-
pirical series expansions in temperature are now commonly used to improve the model fit of 
liquid-liquid equilibria data: 

TTdTcTbag ijijijijij ln2 +++=∆       (4.2-53),  

TDTCTBA ijijijijij ln+++=τ       (4.2-54),  

( )15273.TFE ijijij −+=α        (4.2-55),  

The parameters of both equivalent forms of the temperature dependence, eqs. (4.2-53) and 
(4.2-54), can be easily converted by noting the definition of ijτ in eq. (4.2-44). The model im-
plementation in GEM-Selektor uses the temperature dependence from eqs. (4.2-54) and (4.2-
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55). This conforms to the most common industry standard as e.g. used by DECHEMA and 
other process simulation software. The NRTL model involves no pressure dependence of the 
interaction energies. 
 
4.2.6. Wilson model  
The Wilson model is suited to represent the properties of liquid mixtures that are moderately 
nonideal, but not for highly nonideal systems that exhibit liquid-liquid immicibility (Renon 
and Prausnitz, 1968). It has the advantage of requiring only two parameters per binary pair 
compared to three that are needed for the more complex NRTL model. For binary systems the 
excess Gibbs energy is given by (Prausnitz et al., 1997): 

( ) ( )1212221211 lnln χχχχχχ Λ+−Λ+−=
RT
g EX

    (4.2-56),  

where 12Λ and 21Λ are the two binary interaction parameters. The activity coefficients are cal-
culated as: 

( ) 







Λ+

Λ
−

Λ+
Λ

+Λ+−=
1212

21

2121

12
221211 lnln

χχχχ
χχχγ    (4.2-57),  

( ) 12 21
2 2 21 1 1

1 12 2 2 21 1

ln lnγ χ χ χ
χ χ χ χ

 Λ Λ
= − + Λ − − + Λ + Λ 

   (4.2-58),  

The model is readily expanded to multicomponent systems, with the excess Gibbs energy giv-
en as (Prausnitz et al., 1997): 

∑ ∑
= =

Λ−=
N

i

N

j
ijji

EX

RT
g

1 1
ln χχ        (4.2-59),  

Activity coefficients are then computed as (Prausnitz et al., 1997): 

∑
∑

∑
=

=

= Λ

Λ
−Λ−=

N

k
N

j
kjj

kik
ij

N

j
ji

1

1

1
ln1ln

χ

χχγ       (4.2-60),  

All other excess properties (enthalpy, entropy, heat capacity) are obtained from partial deriva-
tives of the excess Gibbs energy function and standard thermodynamic relations. The binary 
interaction parameters are now commonly expressed as a simple series expansion in tempera-
ture, either directly or in exponential form: 

TDTCTBA ijijijijij ln+++=Λ       (4.2-61),  

( )TDTCTBA ijijijijij lnexp +++=Λ      (4.2-62),  

The model implementation in GEM-Selektor uses the exponential temperature dependence 
from eq. (4.2-62), which conforms to the most common industry standard as e.g. used by the 
DECHEMA database. 

 
4.3. Models for gases and fluids 
Possible options for built-in calculation of fugacity- and activity coefficients for end members 
of non-ideal fluids in the GEM-Selektor TsolMod library are summarized in Appendix 4-4. 
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Currently, four different equation of state models for fluid mixtures are implemented: Peng-
Robinson (PR78), Peng-Robinson-Stryjek-Vera (PRSV), Soave-Redlich-Kwong (SRK) and 
Churakov-Gottschalk (CG). 

The simplest representation of the P-V-T properties of gases and fluids is the ideal gas law, 
which is a reasonable approximation at low pressures. The conceptual model of the ideal gas 
assumes that the gas molecules have zero volume and do not interact with each other. The 
ideal gas law is given by: 

 TRnVP =          (4.3-1) 

where n is the mole amount of the ideal gas. For gases and fluids, two different standard states 
are generally used, which are the pure ideal gas at T of interest and 1 bar pressure, and the 
pure ideal gas at T and P of interest (Anderson, 2005). The GEM-Selektor code uses the 1 bar 
standard state throughout, consistent with the standard state convention adopted by the SUP-
CRT92 computer code and database (Johnson et al., 1992). A change in pressure of the ideal 
gas from 1 bar to P of interest results in a change in entropy and Gibbs free energy of: 

 ( )PRS ln−=∆         (4.3-2) 

 ( )PTRG ln=∆         (4.3-3) 

With increasing pressure, the properties of nearly all gases diverge significantly from the pre-
diction of the ideal gas law. Therefore, a considerable number of (mostly empirical) equation 
of states (EoS) have been developed to describe the P-V-T properties of gases and fluids more 
accurately. One of the most popular family of EoS models are the cubic equations of state, 
which are derived from the Van der Waals equation: 

 ( ) 2V
a

bV
TRP −
−

=         (4.3-4) 

The Van der Vaal EoS corrects the ideal gas law for attractive (term a) and repulsive (term b) 
forces between the gas molecules. The repulsive term b (termed the co-volume) is also viewed 
as a correction for the finite (non-zero) volume of gas molecules. Although the Van der Waals 
EoS represents a considerable improvement of the ideal gas law, it is still not accurate enough 
for real geochemical applications at moderate to high pressures. Therefore, many improved 
cubic EoS were developed, with the most common types being based on the Redlich-Kwong 
and Peng-Robinson models. The original form of the Redlich-Kwong EoS is given by: 

 ( ) ( )bVVT
a

bV
TRP

+
−

−
= 0.5        (4.3-5) 

Several modifications have been proposed, one of the most common versions is that by Soave 
(1972) which is implemented into GEM-Selektor. The basic equation of the Soave-Redlich-
Kwong (SRK) EoS model is: 

 ( )
( )bVV

Ta
bV

TRP
+

−
−

=        (4.3-6) 

The attractive and repulsive terms are expressed as: 

 α=
C

2
C

2

427470
P
TR.a        (4.3-7) 
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C

C086640
P
TR.b =         (4.3-8) 

 ( )[ ]20.5
R11 Tm −+=α        (4.3-9) 

where m is a function of the acentric factor ω, a measure of the non-centric nature of the gas 
molecules: 

 217605741480 ω−ω+= ...m       (4.3-10) 

Many modifications of the Redlich-Kwong EoS have been propsed, including the version by 
Kerrick and Jacobs (1981) for the CO2-H2O system at high pressures. Holland and Powell 
(1991) have proposed a modification which corrects the behavior of the Redlich-Kwong EoS 
by the addition of up to 3 virial terms at higher pressures. This compensated Redlich-Kwong 
(CORK) model has found wide application in metamorphic petrology, and is implemented in 
GEM-Selektor in conjunction with the Van Laar model for non-ideal mixing of fluids in the 
C-O-H-S system (Holland and Powell, 2003; Evans et al., 2010). 

The Peng-Robinson (PR) EoS, which is widely used in chemical engineering and now also in 
geochemistry, has improved the Van der Waals EoS by modifying the repulsive term. The 
basic Peng-Robinson EoS is given by: 

 ( ) ( ) ( )bVbbVV
a

bV
TRP

−++
−

−
=       (4.3-11) 

The attractive and repulsive terms are then expressed as: 

 α=
C

2
C

2

4572350
P

TR.a        (4.3-12) 

 
C

C0777960
P
TR.b =         (4.3-13) 

 ( )[ ]20.5
R11 T−κ+=α        (4.3-14) 

where TC and PC are critical temperature and pressure, and TR is the reduced temperature 
(T/TC). The parameter κ is calculated from the acentric factor (Peng and Robinson, 1976). For 
large molecules with an acentric factor larger than 0.49, a slightly different function is used 
(Robinson and Peng, 1978). The Peng-Robinson EoS is a quite good model for nonpolar gas-
es, but application to polar gases such as HCl or H2O required further improvement. One 
modification, the PRSV model (Stryjek and Vera, 1986a), has become quite popular in geo-
chemistry and is now implemented in GEM-Selektor. The PRSV model has introduced a fur-
ther correction term: 

 ( ) ( )R
0.5

R10 701 T.T −+κ+κ=κ       (4.3-15) 

An extended version (PRSV-2) uses three correction terms (Stryjek and Vera, 1986b): 

 ( ) ( ) ( )( )RRRR TTTT −+−−++= 7.01]1[ 5.05.0
3210 κκκκκ    (4.3-16) 

The κ0 term is then a function of the Pitzer acentric factor ω:  

 32
0 0196544.017131848.04897153.1378893.0 ωωωκ +−+=   (4.3-17) 

The PRSV model represents P-V-T properties of many gases, including H2O and CO2, up to 
moderate pressures. 
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The basic EoS models described above are used to represent the properties of pure gases. For 
gas mixtures, additional mixing rules need to be applied. The most simple is the Lewis fugaci-
ty rule (Anderson, 2005), which assumes ideal mixing of non-ideal gases (represented by the 
EoS models above). The Lewis fugacity rule works reasonably for mixtures of gases with 
very similar properties, but is extremely inaccurate for mixtures of polar and non-polar gases. 
For such dissimilar mixtures, a large number of mixing rules have been developed, with the 
most simple (and most general) one proposed by Van der Waals. Here, the repulsive parame-
ter b is expressed as simple average over all gas species: 

 ∑
=

=
m

1j
jjmix bb χ          (4.3-18) 

The attractive term is calculated as sum of the contributions from all possible binary interac-
tions: 

 ∑∑
= =

=
m

1j

m

1k
kjkjmix aa χχ         (4.3-19) 

The binary interactions kja are then calculated from the combining rule, which in the simplest 
case is given by the geometric mean: 

 ( ) 50
kjkj

.aaa =          (4.3-20) 

Nonideality effects can then be expressed by different corrections to the combining rules, e.g. 
by applying one binary interaction parameter: 

 ( ) ( )kj
50

kjkj 1 kaaa . −=        (4.3-21) 

The current implementation of the cubic EoS models (SRK, PR78, PRSV) in GEM-Selektor 
supports basic Van der Waals mixing rules, with the option to use one constant or a tempera-
ture-dependent binary interaction parameter (Jaubert and Mutulet, 2004). 

Recent development of EoS models for gases and fluids was focused on more physical mod-
els, i.e. models that are based on fundamental properties of the molecules such as molecular 
potentials, dipole- and quadrupole effects, and polarizability. These models have much better 
extrapolative capabilities than the more empirical cubic EoS and require less parameters. The 
Churakov-Gottschalk fluid model (Churakov and Gottschalk, 2003a; b) that is implemented in 
the GEM-Selektor code represents one such model (see detailed description in the accompa-
nying document “TPX-corrections-CG-EoS”). One drawback of such models is that they are 
computationally very expensive and therefore currently less suitable for coupled reactive mass 
transport models. It is expected though that with ever increasing computer power such models 
will be more universally used in the future. 
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Appendix 4.1. Built-in options for calculation of activity coefficients for aqueous species 
(TSolMod library, GEM-Selektor v. 3.2). 
 
Code Model Equations  Input parameters 

D Davies 4.1-10 Ionic strength I (eqn 4.1-3, computed automatically on 
each GEM IPM iteration); molality correction optional 

H Extended Debye-
Hückel (Helgeson) 

4.1-9,      
4.1-11 

I; common ion-size parameter å = 3.72 (parameters 
from DComp/ReacDC records ignored); common bγ  
parameter (default 0.064) 

Y Extended Debye-
Hückel (Shvarov) 

4.1-9,      
4.1-11 

I; common ion-size parameter å = 3.72 (parameters 
from DComp/ReacDC records ignored); common bγ  
parameter (default 0.064) 

3 Extended Debye-
Hückel (Karpov) 

4.1-9,     
4.1-11 

I; individual ion-size parameter å (Kielland, collected 
from DComp/ReacDC records); common bγ  (third) 
parameter (default 0.064) 

2 Debye-Hückel 4.1-5a I; individual ion-size parameter å (Kielland, collected 
from DComp/ReacDC records); 

1 Debye-Hückel lim-
iting law 

4.1-8 I – ionic strength only (eqn 4.1-3) 

S SIT (BGS) model 4.1-12 I; two interaction coefficients per cation-anion pair (to 
enter into ph_cf array of Phase record)  

Z Pitzer (HMW) mod-
el 

4.1-32 to 
4.1-36 

I; several sorts of binary and ternary interaction coeffi-
cients (in ph_cf array of Phase record) 

Q EUNIQUAC model 4.1-42 to 
4.1-66 

I; volumen and surface parameter per species; binary 
interaction coefficients (in ph_cf array of Phase rec-
ord) 

 
Note: The Debye-Huckel based aqueous models can be used with different options: 
1) extended term parameter constant or temperature- and pressure-dependent 
2) calculate the activity coefficients for neutral species from the extended-term parameter 
(generic salting-out coefficient) or set to 1.0 
3) calculate the activity coefficient of water solvent from the osmotic coefficient or set to 1.0 
 
Note: A brief description of the format for the input of the interaction parameter coefficients 
in SIT, Pitzer, and EUNIQUAC models implemented in TSolMod library is provided in Ap-
pendix 4.6.   
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Appendix 4.2. Built-in options for activity coefficients for end members of condensed (solid 
and liquid) non-electrolyte solution phases (TSolMod library, GEM-Selektor v. 3.2). 

 
Code Model Equations Interaction parameters (to enter into ph_cf  array) 

G Redlich-Kister 
model (binary) 

4.2-36 to 
4.2-38 

three constant binary interaction parameters 

M Subregular model 
(binary) 

4.2-10 to 
4.2-13 

two binary interaction parameters, each represented with 
3 coefficients as a – b⋅T + c⋅P 

T Regular model (ter-
nary) 

4.2-21 to 
4.2-24 

one binary interaction parameter per pair and 1 ternary 
interaction parameter, each represented with 3 coeffi-
cients as a – b⋅T + c⋅P 

R Regular model 
(multicomponent) 

4.2-29,   
4.2-30 

one binary interaction parameter per pair of components, 
represented as  a + b⋅T + c⋅P 

V Van Laar model 
(multicomponent) 

4.2-31 to 
4.2-35 

one binary interaction parameter per pair of components, 
represented as a + b⋅T + c⋅P 
one size parameter per component (end member) in 
dc_cf array 

K Redlich-Kister 
model (multicom-
ponent) 

4.2-41,   
4.2-42 

four binary interaction parameters per pair of compo-
nents, represented as a + b⋅T + c⋅T⋅ln(T) + d⋅P 

L NRTL model (mul-
ticomponent) 

4.2-50,   
4.2-51 

two normalized binary interaction energies per pair of 
components, represented as  A + B/T + C⋅T + D⋅ln(T) 
1 parameter α per pair of components: E + F⋅ (T-273.15) 

W Wilson model (mul-
ticomponent) 

4.2-59,   
4.2-60 

two binary interaction energies per pair of components, 
represented as exp[ A + B/T + C⋅T + D⋅ln(T) ] 

U User-defined  Must be provided as Phase scripts and parameters 
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Appendix 4.3. Built-in options for mixed non-ideal gas/fluid phases (TSolMod library, GEM-
Selektor v. 3.2). 
 
Code Model  Equations  Parameters 

F CG (Churakov-
Gottschalk) EoS  

Section 3 4 to 12 parameters per species, collected from 
DComp records 

8 CORK (compensated 
Redlich-Kwong) EoS 

4.3-6 to  
4.3-10 

two parameters per species, collected from DComp 
records, special built-in routines for H2O and CO2 
one constant binary Van Laar model interaction pa-
rameter 
(to enter into ph_cf  array) 

7 PR78 (Peng-
Robinson) EoS 

4.3-11 to  
4.3-17 

three parameters per species, collected from DComp 
records 
one binary interaction parameter per pair (constant 
or temperature-dependent) 
(to enter into ph_cf  array) 

P PRSV (Peng-
Robinson-Stryjek-
Vera) EoS 

4.3-11 to  
4.3-17 

six parameters per species, collected from DComp 
records 
one binary interaction parameter per pair (constant 
or temperature-dependent) 
(to enter into ph_cf  array) 

E SRK (Soave-Redlich-
Kwong) EoS 

4.3.6 to  
4.3-10 

three parameters per species, collected from DComp 
records 
one binary interaction parameter per pair (constant 
or temperature-dependent) 
(to enter into ph_cf  array) 

 
Note: Codes should be selected in Phase Wizard upon remake of Phase records. The codes are 
visible in p_solt[0,0] field on Phase screen form (Page 3). 
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Appendix 4.4. Representation of activities and activity coefficients of aqueous species and 
water in the output of GEM-Selektor v.2.2.4 and above. 
 
The primal chemical potential of aqueous species is defined in GEM-Selektor as (Karpov et 
al., 2001; see also eqn. 4.1-1): 
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and that of water-solvent as:  
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The non-logarithmic asymmetry correction terms on the right-hand side of these two equa-
tions (i.e., wjw Xx−1 and jwwwjw xXXx −−2 ) were derived by Karpov (pers.comm.) by 
partial differentiation of the total Gibbs energy of asymmetric aqueous solution with molality 
concentration scale for dissolved species and mole fraction scale for water. These terms be-
come significant at total molalities above 0.7 and greatly speed up convergence of GEM IPM 
at first iterations after the automatic initial approximation, where the mole fraction of water 
can be less than 0.001. To our knowledge, these asymmetry correction terms were not dis-
cussed in the documentation of other GEM or LMA speciation codes.  

The normalized chemical potential of any compound is computed in GEM-Selektor in a quite 
general way from the dual solution vector u (the chemical potential of elements) and the com-
pound stoichiometry: 

 ∑
∈

=
Ni

ijij uaη          (A4-3) 

This leads to an uniform calculation of activity (fugacity) of the j-th component: 

 

lna j = η j −
g j

o

RT
          (A4-4) 

regardless of whether the j-th component is actually present in the mass balance or not (Kulik, 
2006). This activity will be expressed in the same concentration scale as o

jg , i.e. molality scale 
for aqueous species. In the GEM-Selektor, the calculated value is called “dual-thermodynamic 
activity” and is displayed either as log10aj or aj, depending on the dialog. 

Combining eqs (A4-1) and (A4-3) leads to: 
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The formal definition of (molal) activity is jjj yma lnlnln += . Using the definition of molal-

ity 
wj

j

w
j x

x
M

m 1000
=  (eqn 4.1-4), it follows that  

w

j
jjj X

x
ma w−++= 1lnlnln γ .  

There is some ambiguity where to attach the asymmetry correction term in order to satisfy the 
formal definition of molal activity ( jjj yma lnlnln += ). In GEM-Selektor v.2.2.3 or older, 
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this ambiguity was rather arbitrarily resolved by considering the term wj Xx
w

−1  as part of 
the dual-thermodynamic activity term, displayed as: 

 

 

ln a j = η j −
g j

o

RT
− 1−

x jw

Xw

 

 
 

 

 
        (A4-6) 

Conversely, the direct multiplication of molality mj by the internal activity coefficient γj cal-
culated from one of eqs (4.1-5) – (4.1-12) would satisfy the definition of molal activity. 
Likewise, the asymmetry term for water-solvent (eqn A4-2) was also added into its dual-
thermodynamic activity term as: 

 

 

lna jw = η jw −
g jw

o

RT
− 2 −

x jw

Xw

−
Xw

x jw

 

 
  

 
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        (A4-7) 

However, some recent tests (provided by B. Lothenbach) at elevated salt concentrations 
showed that this assignment of asymmetry term to activity was not quite correct. For instance, 
any equilibrium constant, e.g. a solubility product of a stable phase, should be reproducible 
from calculated activities independently of ionic strength, both from dual-thermodynamic 

jaln values or from the products )m( jjγln . Comprehensive tests showed that this was not the 
case, and recalculated solubility products deviated slightly from the theoretical ones at I<0.3 
but increasingly with increasing ionic strength. 

This led to important corrections since GEM-Selektor version 2.2.4. The only accurate and 
consistent assignment of the asymmetry term was found to be in the “external” molal activity 
coefficient jyln  and not in the dual-thermodynamic jaln term. For any aqueous species, the 

(dual-thermodynamic) activity is now displayed strictly as RTga o
jjj −η=ln  (eqn A4-3) (or 

exponent of this, or in decimal logarithm, where appropriate).  Thus calculated aj value is at 
any ionic strength equal (up to 6th digit) to the product jj ym where the “external” molal activi-
ty coefficient is computed as  

 

ln y j = lnγ j +1−
x jw

Xw

        (A4-8).  

There is an important consequence of this correction for neutral aqueous species present in the 
mass balance. Even if the internal activity coefficient is set to γjn =1, the external activity co-
efficient will be equal to ( )wjwjn Xxy −= 1exp  which is 1 only in pure water. The table be-
low shows numerical values of yjn as function of total dissolved molality mΣ. These values al-
so give an impression of the bias in log10aj and γj results displayed by GEMS versions 2.2.3 or 
older at various dissolved salt concentrations. 

mΣ 0.001 0.01 0.1 0.2 0.4 0.6 1.0 2.0 4.0 6.0 10.0 

yjn 1.000 1.000 1.002 1.004 1.007 1.011 1.018 1.035 1.07 1.10 1.165 

log10 yjn 7.8e-6 7.8e-5 .00078 .0016 .0031 .0046 .0077 .0151 .0292 .0423 .0663 

  

After corrections, the equilibrium constants can be restored (to a numerical precision of ca. 
1e-6 in ln scale) either from jaln or from jj ym values, or their combination. For the water-
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solvent, the dual-thermodynamic activity is now displayed strictly from eqn (A4-3) and the 
“external” asymmetric mole-fraction activity coefficient as:  

jw

w

w

j
jwjw x

X
X
x

y w −−+= 2lnln γ        (A4-9).  

The table below shows values of yjw as a function of mΣ   (assuming that γjw = 1). 

mΣ 0.001 0.01 0.1 0.2 0.4 0.6 1.0 2.0 4.0 6.0 10.0 

yjw 1.000 1.000 1.000 1.000 .9999 .9999 .9997 .9987 .9952 .9895 .9729 

log10 yjw -1e-10 -1.4e-8 -1.4e-6 -5.6e-6 -2.2e-5 -5e-5 .0001 .0005 .0021 .0046 .0119 

  

As follows from eqn (A4-8), there is a small difference between the “external” molal activity 
coefficient yj and the “internal” molal activity coefficient γj. The former is displayed (as “gam-
ma” in screen forms or as “external activity coefficient” in the “Single thermodynamic sys-
tem” dialog) in GEMS output together with molality mj (concentration in the “Single thermo-
dynamic system” dialog) but not used in any internal calculations in GEM IPM, where only 
the “internal” activity coefficient 

 

lnγ j (displayed as “lnGam” in screen forms) is recalculated 
at each IPM iteration from eqs (4.1-5) – (4.1-12). The same, but smaller, difference (see eqn 
A4-9) applies for “external” yjw and “internal” γjw activity coefficients of water-solvent. 
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Appendix 4.5.  How to reproduce miscibility gaps in GEM-Selektor calculations 
The GEM method based on dual thermodynamics has a rigorous theoretical basis – the Kar-
pov-Kuhn-Tucker necessary and sufficient conditions of minimum of the total Gibbs energy 
function and, hence, of chemical equilibrium speciation in a multisystem. The latter is under-
stood as a heterogeneous chemical system that can include simultaneously aqueous electro-
lyte, gas mixture, many mixtures with two or more end-members, many sorption phases, and 
any number of stoichiometrically feasible pure substance phases. All multi-component phases 
may be non-ideal, and the total number of phases initially included in the mass balance may 
far exceed the number of phases predicted by the Gibbs’ phase rule. A unique solution corre-
sponding to the global minimum of total Gibbs energy function is ensured when all phases are 
ideal or moderately non-ideal.  

The GEM IPM algorithm can also produce correct equilibrium speciation in highly non-ideal 
systems where the miscibility gaps are possible within some phase mixing models, but a care-
ful chemical system definition and a special initial approximation are required in such cases.  

If the system bulk composition is such that the solid solution phase is likely to exsolve into 
two mixture phases, but only one such phase is included into the GEM system definition, a 
metastable solution of the equilibrium problem is guaranteed because one phase will be locat-
ed in the two-phase composition region. Therefore, if a binary solid solution has a miscibility 
gap then two (identical or not) binary mixture phase definitions must be included. If a ternary 
mixture has a miscibility gap along one binary then two ternary phase definitions need to be 
included; and so on.  

Two cases are now possible. If the equilibrium composition of the mixture falls outside the 
miscibility gap then the “multiplicated” solution phases will have the same composition (mole 
fractions of end members), but may be present in different amounts, up to that only one phase 
is retained. However, in the case when the whole mixture composition falls into a miscibility 
gap, but all “copy” phases have received the same end member mole fractions after the sim-
plex (automatic) initial approximation, the GEM result will be most probably incorrect be-
cause the phase “copies” will have the same (metastable) composition. This problem, howev-
er, can be easily solved by application of the following initial approximation procedure.  

Suppose there is a binary mixture (e.g. barite BaSO4 and celestite SrSO4) known to have a 
miscibility gap at low temperatures, manifested by a regular Redlich-Kister parameter α0 > 
2.0. In this case, two definitions of solid solution phases, called e.g. “Ba-Celestite” and “Sr-
Barite”, need to be inserted into the GEM chemical system definition. Thermodynamic data 
for the end-members and the mixing model equations are identical in both phase definitions. 
The only difference is that in the first phase definition, the SrSO4 end member must be 
marked as “major” (‘M’ in the PhDCC column on Page 1 of the Phase window) and BaSO4 as 
“junior” (‘J’), and in the second phase, the SrSO4 end member is marked as “junior” (‘J’) and 
BaSO4 as “major” (‘M’). These declarations are used only to obtain such automatic initial ap-
proximation that the initial composition of all “copy” solution phases fall outside the miscibil-
ity gap, before entering the main GEM IPM algorithm.  

At the beginning, large positive increments to standard go values (17 to 20 kJ mol-1) will be 
assigned to all “junior” end members in order to make them relatively unstable with respect to 
the “major” end members. After the simplex initial approximation, both solid solution phases 
will enter the main GEM IPM process with different compositions, in particular, “junior” end-
members with very small mole fractions. At this point, the go increments are removed. After 
the main IPM algorithm has finished, the two (or more) phases will have different binodal 
compositions only when these are located on both sides of the miscibility gap and both phases 
co-exist at equilibrium. Note that even in this case, the activity of an end-member in all 



 

4. GEMS TSolMod Built-In Activity Models v.3.2 (D. Kulik and T. Wagner, with contribution by U. Berner & F.Hingerl) 

33 

“copy” solution phases will be the same, only its mole fraction and activity coefficient differ-
ent. Otherwise, the IPM will converge either with two phases of the same composition (usual-
ly, one of them in trace quantity), or one of these solid-solution phases eliminated. If there is 
no need to consider a solid solution system with a miscibility gap then it is sufficient to intro-
duce only one solid-solution phase definition into the model chemical system.  

Note also that there is no way to reproduce spinodal compositions in GEM forward calcula-
tions, unless simulating them with a “less non-ideal” mixing model.  
In the region near the critical point, the convergence of GEM IPM was found to be slow and 
difficult, most probably due to the fact that the G(x) function surface in this area is almost flat. 
To improve on quality of results, especially near the critical point of the mixed phase, in 
GEMS-PSI versions starting from 2.1, some additional automatic “no-simplex” IPM refine-
ment loops can be invoked by setting their number (as negative, from -1 to -30) in the 
Pa_PRD[0,1] cell on the “Project:: Numerical and Configuration Settings” window, accessi-
ble via “Numerical Controls” button from the “Gibbs Energy Minimization Modelling Pro-
ject” dialog.  
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Appendix 4.6. How to input the parameters and coefficients for built-in specific ion interac-
tion SIT, Pitzer, and EUNIQUAC aqueous activity models from TSolMod library 

 
To set up a specific ion interaction model, a Phase definition record must be created in the 
modeling project data base. This process (upon creating or remaking the Phase record) con-
sists mostly of selecting a proper built-in model code (see Appendix 4.1) and the number of 
non-zero interaction parameters in the Phase remake wizard, followed by selecting all aque-
ous species involved in the model (including OH-, H+ and H2O@) available in DComp and 
ReacDC records. After this is finished, proceed to Page 3 of Phase window and click on the 
“Calculate” toolbar button to create temporary lists of cations (plsCat), anions (plsAn), and 
neutral species (plsNs) with their indices (pnxCa, pnxAn, pnxNs, respectively) in the Phase 
record list (this works for SIT and Pitzer models). 

Interaction parameter coefficients must be entered in columns of the ph_cf table, forming a 
row for each interaction parameter. In the same row, two or three indices in the ipxT columns 
indicate the interacting species (names for indices are visible in plsCat, plsAn, and plsNs lists). 
The number of indices and coefficients per parameter depends on the model type and (in 
Pitzer model) on the parameter type. Unused indices must be entered with -1 from the right-
most ipxT column. The given interaction parameters (rows) may appear in any order.   

SIT model: only binary interaction parameters each with two coefficients are used.  

EUNIQUAC model: only binary interaction parameters with two coefficients, as well as two 
parameters per dependent component (to be entered in dc_cf columns on Page 2 of Phase 
window). 

Pitzer (HMW) model: binary or ternary interaction parameters of different types, each given 
by four coefficients (see below).  

 
Example of SIT model input: 
 

 
    
Here, four SIT interaction parameters are provided in the aqueous phase containing 17 spe-
cies. Coefficients in ph_cf rows correspond to eq (4.1-18): 



 

4. GEMS TSolMod Built-In Activity Models v.3.2 (D. Kulik and T. Wagner, with contribution by U. Berner & F.Hingerl) 

35 

ε(i,k,I) = ε1(i,k) + ε2(i,k)·log10I 
By default, all other interaction parameters (not given in the list) are taken as equal to zero. 
The given interaction parameters (rows) may appear in any order.      
   

Example of EUNIQUAC model input:  
 
Volume parameter rj  and surface area parameter qj (see Section 4.1.6) per each species in the 
aqueous phase must be provided in the dc_cf[0] and dc_cf[1] columns on Page 2 of the Phase 
record, as shown below (data for this example are from [Villafafila Garcia, 2005], p.131-132). 
 

 
 
Binary interaction parameters uij, each represented by two coefficients 0

iju and t
iju , see eq 4.1-

61, ( )0 298 15= + −t
ij ij iju u u T . , characterize the energetic interaction between species i an j; 

they have to be provided on Page 3 of the Phase window. The indexes of interacting species 
correspond to the common list located below the ipxT – ph_cf table (no distinction between 
indices of cations, anions and neutral species).    
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Example of Pitzer (HMW) model input: 
 
This example refers to a small model aqueous phase (lists of species, cations, anions, and neu-
tral species are shown below). 
 

 
 
 
 
 
 
The Pitzer parameters for the sub-system Na+, Cl-, CO2(aq) were collected to the following 
table: 
 
spec 1 spec 2 spec 3 parame

ter 
T1 T2 T3 T4 T5 

Na+ Cl- - β(0)
ca 7.46E-02 -4.71E+02 -1.85 1.66E-03 0 

Na+ Cl- - β(1)
ca 2.75E-01 -5.21E+01 -2.88 4.71E-03 0 

Na+ Cl- - β(2)
ca 0 0 0 0 0 

Na+ Cl- - CΦ
ca 1.54E-03 4.81E+01 1.75E-01 -1.56E-04 0 

CO2(aq) Na+ - λnc 7.75E-02 -1.92E+04 -1.17E+02 1.75E-01 0 

CO2(aq) Cl- - λna 2.02E-02 5.08E+03 3.01E+01 -4.47E-02 0 

CO2(aq) Na+ Cl- ζnca -5.50E-04 -3.97E+03 -2.44E+01 3.73E-02 0 
 
 
Parameter values are described in Alai et al (2005). T1 to T4 indicate the coefficients of the 
5th order polynomial which is applied for fitting the temperature dependence of each parame-
ter. The fifth temperature dependent parameter T5 is always zero in the given example sys-
tem. The parameter types must be encoded using the following legend:  
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Parameter codes used in the Pitzer model implementation in TSolMod 
 
 
parameter code species 1 species 2 species 3 

β(0)
ca -10 cation anion - 

β(1)
ca -11 cation anion - 

β(2)
ca -12 cation anion - 

CΦ
ca -20 cation anion - 

λnc -30 neutral cation - 

λna -31 neutral anion - 

θcc -40 cation cation - 

θaa -41 anion anion - 

ψcca -50 cation cation anion 

ψaac -51 anion anion cation 

ζnca -60 neutral cation anion 
 
 
This results in the following parameter table entered into the Phase definition window: 
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